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HIGH-ORDER TWO-WAY ARTIFICIAL BOUNDARY CONDITIONS FOR NONLINEAR

WAVE PROPAGATION WITH BACKSCATTERING*

GADI FIBICHt AND SEMYON TSYNKOV t§

Abstract. When solving linear scattering problems, one typically first solves for the impinging wave

in the absence of obstacles. Then, using the linear superposition principle, the original problem is reduced

to one which involves only the scattered wave (which is driven by the values of the impinging field at the

surface of the obstacles). When the original domain is unbounded, special artificial boundary conditions

(ABCs) have to be set at the outer (artificial) boundary of the finite computational domain, in order to

guarantee the reflectionless propagation of waves through this external artificial boundary. The situation

becomes conceptually different when the propagation equation is nonlinear. In this case the impinging and

scattered waves can no longer be separated, and the problem has to be solved in its entirety. In particular, the

boundary on which the incoming field values are prescribed, should transmit the given incoming waves in one

direction and simultaneously be transparent to all the outgoing waves that travel in the opposite direction.

We call this type of boundary conditions two-way ABCs. In the paper, we construct the two-way ABCs

for the nonlinear Helmholtz equation, which models a continuous-wave (CW) laser beam propagation in a

medium with nonlinear index of refraction. In this case, the forward propagation of the beam is accompanied

by backscattering, i.e., generation of waves in the opposite direction to that of the incoming signal. Our two-

way ABCs generate no reflection of the backscattered waves and at the same time impose the correct values

of the incoming wave. The ABCs are obtained in the framework of a fourth-order accurate discretization to

the Helmholtz operator inside the computational domain. The fourth-order convergence of our methodology

is corroborated experimentally by solving linear model problems. We also present solutions in the nonlinear

case using the two-way ABC which, unlike the traditional Dirichlet boundary condition approach, allows for

direct calculation of the magnitude of backscattering.

Key words, artificial boundary conditions (ABCs), two-way ABCs, radiation, the Helmholtz equation,

nonlinearity, nonparaxiality, fourth-order schemes, self-focusing, backscattering

Subject classification. Applied and Numerical Mathematics

1. Introduction. The Helmholtz equation
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AE(Xl,...,XD) + k2E = O, A = _ +... + Ox_ ' (1.1)
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models time-harmonic wave propagation in D dimensions. The simplest case is when k - k0, which corre-

sponds to propagation of waves through a homogeneous medium. For example, in optics E is the electric

field, k0 = wono/c is the wavenumber, w0 is frequency, no is the (linear) index of refraction of the medium,

and c is the speed of light.

In many applications, one wants to solve equation (1.1) in the presence of an impinging wave field and

boundaries, which can be either surfaces of obstacles or interfaces between different media. The impinging

wave field is prescribed by a relation of the form

Ein c : E°nc on _-]_impinging , (1.2)

where Eimpinging can, for example, be a point (specifies a spherical wave) or a plane (specifies a plane wave),

and E°nc is given. The physical properties of surfaces and/or interfaces, i.e., how they handle the impinging

wave in terms of propagation through and/or reflection, are given by linear operator relations of the form

LIE] : 0 on _interface • (1.3)

For example, if Einterface is the surface of a perfect conductor, then (1.3) reduces to E = 0 on Einterface (total

reflection).

Since equations (1.1-1.3) are linear, one can solve the scattering problem in two sequential stages as

follows. The solution is split into two components

E : Ein c + Escat .

At the first stage one solves for the incoming wave field Einc, which is the solution of equation (1.1) in E D

in the absence of any obstacles and/or interfaces, driven by the known source term (1.2). Typically, one can

write this solution explicitly as a superposition of plane and/or spherical waves. Then, at the second stage,

one solves for the scattered wave field Escat, which satisfies equation (1.1) with no sources, subject to the

boundary condition

L[Escat ] :-L[Einc] on _-]_interface ,

which directly follows from (1.3). In the process of solving numerically for Escat, one has to replace E D with

a bounded computational domain. In doing so, one needs to introduce the artificial boundary conditions

(ABCs), see [28], which make the boundary transparent for outgoing waves and guarantee the solvability of

the truncated problem on the finite computational domain, such that the computed solution is close to the

original infinite-domain solution.

In addition to the simplest case k - k0, there are numerous applications where the medium is non-

homogeneous, i.e., k = k(Xl,... ,XD). In this case, one may also need to solve for the incoming field Einc

numerically (using ABCs), rather than analytically, However, as this problem is linear as well, one can still

employ the linear superposition principle and thus first solve for Einc and then for Escat.

In the current study, we consider a more complex case when k depends also on the field intensity, i.e.,

k -- k(w0, IEI2). For example, the propagation of an intense continuous-wave (CW) laser beam I through

a Kerr-type medium such as water or silica, is described by equation (1.1) with k 2 = k_(1 + elEI2), where

1CW laser beam is a monochromatic wave, i.e., it is "purely" periodic in time, as opposed to, say, pulses and wave packets.



e = 4e0cn2 and n2 in the Kerr coemcient 2 (e.g. [4, 19]). In this case, beam propagation is governed by the

nonlinear Helmholtz equation (NLH)

AE+ k2E = 0, k 2 = k_(l+elEI 2) . (1.4)

Because of the nonlinearity, the equations for Einc and Escat can no longer be decoupled as in the linear

case. From a numerical point of view, this nonlinear coupling adds a new twist to the construction of the

ABCs, since the Kerr medium interface at z = 0 is required to transmit Einc in one direction, and at the

same time transmit Escat in the opposite direction. Deriving and implementing this two-way ABC in the

discrete nonlinear framework is a key emphases of this study.

2. Physical model. Although our numerical approach is quite general, in order to motivate the pre-

sentation we relate it to a specific physical problem, namely, that of an intense laser beam propagating

through a nonlinear Kerr medium. The Kerr medium is located in the half-space z > 0, the directions of

increasing and decreasing z are called right and left, respectively, and the wave source in the model is a

right-traveling beam, impinging on the Kerr medium at z = 0. Therefore, the only physical boundary in

the model is the transverse two-dimensional (x, y) plane at z = 0. For simplicity, we assume that the input

beam is radially-symmetric in the transverse plane and denote the transverse coordinate by r = V/_ + y2.

2.1. Two-way propagation of waves at media interface. At z = 0, the electric field E has both

incoming and backscattered components.

medium is given by

The value of the incoming wave upon entering the nonlinear

Einc(r, 0) =E_nc(r) • (2.1)

In the current formulation of the problem, the two-way ABC at z = 0 has to ensure the reflectionless

propagation of backscattered waves through the boundary (a radiation boundary condition) and at the same

time correctly prescribe the incoming signal (2.1).

We note, however, that a more accurate physical model should include reflections from the media interface

z = 0. These reflections can result in different values of the incoming wave field on two sides of the interface,

i.e., Einc(r,-0) # Einc(r, +0). In the current study we disregard this effect, which can be interpreted as

either considering E°nc of (2.1) to be the part of the incoming wave that has already been transmitted past

the z = 0 interface, or assuming continuity of the wavenumber across the interface. Similarly, we neglect

the reflection of the scattered waves by the media interface at z = 0. In other words, we require that the

boundary z = 0 be completely transparent for all left-propagating waves. In Section 8.2, we briefly comment

on how one can incorporate a reflecting interface (i.e., discontinuity in k at z = 0) in the methodology that

we are building. In fact, we consider this as one of the future extensions of our current work.

2.2. Behavior as z ---+ +cx_. Basically, as z ---+ +cx_, we require that E have no left-propagating

components. In this study we assume that at large distances propagation is diffraction-dominated and the

field amplitude decays to zero, i.e., lim max IE(r,z)l = 0, so that
z-+_ 0<r<_

lim k 2 = k_ .
z--+A-_

2We note that the index of refraction is defined in the frequency domain. In the time-domain, the cubic nonlinearity

becomes a nonlocal convolution, which, in the case of almost-monochromatic wavepackets, to leading order, is equal to a cubic

nonlinearity [9].



Therefore, at large z's the solution is a linear superposition of right-traveling waves.

In the discretization process (see Sections 5 and 6) we truncate the unbounded domain and introduce

a far-field artificial boundary at z = Zmax. Similarly to the interface z = 0, the far-field boundary has to

be transparent for all outgoing (i.e. right-propagating) waves. Consequently, the ABC at z = Zma_ has to

guarantee the reflectionless propagation of all waves traveling towards z = +oc.

3. Paraxlal approximation. Most research on wave propagation in a Kerr medium has been carried

out in the framework of the nonlinear SchrSdinger equation (NLS), rather than NLH. We now briefly describe

how one derives NLS from NLH and quote some results on wave propagation in the NLS model. For more

information on NLS theory, see, e.g., [11,19, 26, 27].

For reasons that would become clear later, we consider the NLH in E D with a general power-law non-

linearity

AE+ k2E = 0, k 2 = k_(l+ elEI 2_') .

We denote the axial coordinate by z := XD, and assume radial symmetry in the transverse plane of the first

D - 1 coordinates, i.e.

= E(r, z) , r = _/X 2 -'_-''" + X2_l .
E

We also separate the slowly-varying envelope ¢ from the fast oscillations and introduce nondimensional

variables:

r z

E = (r0k0vf_) -1/a exp(ikoz)¢(e, 2) , _ = -- , 2 -
ro 2LDF '

where r0 is the initial beam width and LDF = kor_ is the diffraction length. After dropping the tildes, the

equation for the amplitude ¢, in nondimensional form, is given by

where the transverse Laplacian is

and

_npe_ + ie_ + _._ + 1_12_ = 0,

0 2 0 2 02 D - 2 0
A± = 7v +...+ - +

OX2_ l Or 2 r Orox_

In typical physical setups the beam width r0 is much larger than the wavelength A, which implies that

0 < %p << 1 (or, equivalently, in dimensional variables, that _ << k0_). Therefore, it is customary to

employ the paraxial approximation, i.e., neglect the 7np_ term. In that case, NLH reduces to the nonlinear

SchrSdinger equation (NLS):

i_ + A±_ + l_12_ = 0 . (3.1a)

The NLS is an evolution equation where z plays the role of "time" and the initial condition is given at z -- 0:

_/)(r, 0) ---- E°nc(r) . (3.1b)



Therefore,underthe paraxialapproximationoneapproximatesa boundary-valueproblemfor the NLH
withaninitial-valueproblemfor theNLS.SincetheNLSaccountsonlyfor theforward-propagatingwave,
backscatteringeffectsareneglectedin this model.Thequestionarises,therefore,whetherandhowthe
resultsoftheNLSmodelremainvalidat theNLHlevel,oralternatively,howtheseresultsareaffectedby
backscattering.Asofyet,almostnorigorousstudiesoftheseissueshavebeenconducted.Wethereforehope
thatthecurrentstudy,whichfocusesprimarilyondevelopingacomputationalmethodologyforsolvingthe
NLH,will providemeansforcomparingnumericallytheNLHandNLSin thefuture.

Letusnowproceedwithdescribingsomespecificresultsin theNLSmodelwhichareinterestingto look
at in theframeworkoftheNLH.

3.1. Critical self-focusing -- arrest of collapse. We recall that the focusing NLS (3.1a) is called

subcritical, critical or supercritical, when a(D - 1) is less than, equal to, or greater than 2, respectively. It is

known that the solutions of both critical and supercritical NLS can actually develop singularities, i.e., blow

up, at a finite z. There is, however, a marked difference between these two cases, as near the singularity

nonlinearity dominates over diffraction in the supercritical case, while they are of the same magnitude in

the critical case. As a result, unlike the supercritical case, singularity formation in the critical NLS is highly

sensitive to perturbations, which can arrest the blowup even when they are small [11,12]. In this paper we

focus on the critical case, which corresponds to the physical self-focusing (a = 1 and D - 1 = 2). In that

case, solutions of the NLS can become singular (i.e., blow up) after finite propagation distance, provided

that their initial power (L 2 norm) is above a certain threshold Nc, which is called the critical power.

The observation that the paraxial approximation breaks down near the singularity has been already

noted by Kelley, in his celebrated paper on self-focusing [15]. Felt and Fleck [8] were the first to demonstrate

that nonparaxiality of the beam can arrest the blowup, by showing numerically that initial conditions that

lead to singularity formation in the NLS, result in focusing-defocusing oscillations in the NLH. In these

simulations, however, they did not solve a true boundary-value problem for the NLH. Instead, they solved

an initial-value problem for a "modified" NLH that describes the right-going wave only (while introducing

several additional assumptions along the way). Akhmediev and collaborators [1, 2] analyzed an initial-value

problem for a different "modified" NLH; their numerical simulations also suggested that nonparaxiality

arrests the singularity formation. Both numerical approaches ( [8] and [1, 2]), however, did not fully account

for the effect of backscattering. Fibich [10] applied asymptotic analysis to derive an ODE in z for self-

focusing in the presence of small nonparaxiality. His analysis suggests that nonparaxiality indeed arrests the

singularity formation, resulting instead in decaying focusing-defocusing oscillations. However, backscattering

effects were neglected in this asymptotic analysis.

Since there are no singularities in nature (i.e., the laser beam continues to propagate beyond the NLS

blowup point), a natural question is whether initial conditions that lead to blowup in the NLS, correspond

to global solutions of the corresponding NLH. To the best of our knowledge, the very issue of the solvability

of NLH still remains unresolved, including the critical case a(D - 1) = 2. Therefore, we are interested in

solving numerically the critical NLH as a true boundary-value problem, in order to address this question.

Another issue of interest in the critical case is to calculate the amount of power which is backscattered for

beams which do not blow up in the NLS model. We note that at present, there is no data coming from

either analysis or numerical simulations, on the actual extent of backscattering, besides the general notion

that it should be small.

In order to simplify the calculations, we consider the critical NLH with D = 2 and a = 2, i.e.,



02 02 ]+ E(z, r) + k2E = 0,

which corresponds to the critical NLS

k2 = k_(l -4-cIEI 4) , (3.2)

i¢_ + err + 1¢14¢ = 0. (3.3)

Based on the insight gained from NLS theory, we can expect that the results for the critical NLH with D = 2

and a = 2 would also apply for the critical NLH with D = 3 and a = 1.

4. Nonlinear iteration approach. In this section we use a continuous formulation to outline and

motivate the iterative numerical approach that we adopt in this study for solving the foregoing nonlinear

wave propagation problem. The actual derivation, however, will be done completely at the discrete level in

Sections 5 and 6.

We are interested in solving the NLH (3.2) in the half-space z > 0, subject to boundary condition (2.1)

for the incoming field, decay in the transverse direction

lim E(r,z) = 0 ,
r--+_

and radiation conditions at z = 0 and z = +cx_ for the outgoing waves, as discussed in Sections 2.1 and 2.2.

We build the iteration algorithm as follows. First, we define the linear version of the problem as

LF [E] = 0, (4.1)

where

LF = _z 2 + _ + kg l + eF(r,z) , (4.2)

F(r, z) is a given function, and E satisfies the same boundary conditions as in the nonlinear problem. Then,

we find the solution of the nonlinear problem (3.2) using the iterations

LF(n)[E(n+I) ] =0 , F n = IE(n)l 4 for n=0,1,2,...,Af , (4.3)

with the initial guess E (°)(r,z) - 0. Since there is no rigorous theory that guarantees the convergence

of algorithm (4.3), our simulations (see Section 7) serve as a numerical test for the convergence of these

iterations. In Section 8.3 we briefly discuss alternative approaches to the nonlinear iterations.

4.1. Iterative solution of the variable-coefficient linear equation. In general, one can use any

linear Helmholtz solver to solve equation (4.3) with respect to E (n+l) while keeping F (n) frozen. In this

study we solve (4.3) also iteratively as

L0 [E (re+l)] = -ek_F (n) • E (m) for m = 0, 1, 2,..., A//(n) , (4.4)

where

0 0 2 ]

Note that the function F(_) does not change in the course of the iterations (4.4).



Byrewritingformula(4.4)in theform

E(m+ 1) = LO 1 [-ek_F (n) • E (m)] ,

we see that it formally corresponds to the standard fixed point iteration scheme. Therefore, these iterations

are more likely to converge when the RHS is small. We note that this occurs when eF(n) << 1, i.e., when the

nonlinearity in the NLH is weak (k 2 _ k_). We can expect this to be the case in physical self-focusing for

the following reason. The Kerr coefficient of the medium n2 is so small that even for intense laser beams,

upon entering the nonlinear medium, elE°ncl2 << 1. In the framework of the NLS model, if the initial beam

power is above the threshold for collapse, the nonlinear contribution to the index of refraction elEI 2 (see

(1.4)) would eventually become comparable to the linear one no. However, the asymptotic analysis in [10]

suggests that nonparaxiality arrests self-focusing when elEI 2 << 1. As a result, k 2 _ k_ for all z _> 0.

4.2. Direct solution of the eonstant-eoeftleient linear equation. At each iteration of the inner

loop (4.4), we solve a linear constant-coefficient equation of the form

£0E = aS(r, z) , (4.5a)

where the right-hand side (RHS) a5 is given by

q_ = -ek_F (n) . E(,_) . (4.5b)

Equation (4.5a), with • given by (4.5b) and subject to the boundary conditions discussed earlier, is solved

in the following way. We use Fourier decomposition in the transverse direction for the solution E, the RHS

• , and boundary data E°nc(r):

01

E(r, z) = E hI(z) cos(/r) , _(r, z) = E fl (z) cos(/r) , E°nc(r) = E Uinc cos(/r) .
l l l

(4.6)

Because of the orthogonality of the Fourier modes, the l-th Fourier mode u I (z) of E(r, z) satisfies the ordinary

differential equation

u_(z) + kyul(z) = fl(z) , k_ = k_ - l2 , (4.7)

subject to the Dirichlet condition for the right-going wave at z = 0 [cf. (2.1)]:

Ulnc(0 ) O,l (4.8)z Uinc ,

a radiation condition for the left-going wave at z = 0, and a radiation condition at z = +oc. It is at this

level, i.e., after the separation of variables, that we implement the two-way ABC at z = 0 and the radiation

boundary condition at z = +oc. For that, we use the concept of the one-way Helmholtz equations. 3

4.2.1. One-way Helmholtz equations and the radiation principle. Equation (4.7) admits two

linearly-independent eigenfunctions: u (1) = eiV @-_ and u (2) = e-iV/_-_. When k_ > 0, u (1) = e ilkzl_ is the

right-propagating wave and u (2) = e -ilkzl_ is the left-propagating wave, whereas when ky < 0, u (1) = e-lkzl_

is the right-decaying (evanescent) wave and u (2) = elk_l_ is the left-decaying (evanescent) wave. Therefore,

3The term "one-way wave equation" is apparently due to Engquist and Halpern [7].



the one-way Helmholtz equations that each admits only one of the two eigenfunctions while prohibiting the

other one are:

n_ - i_/k'_n = 0 , (4.9a)

n_ + ivf_in = 0 . (4.9b)

Equation (4.9a) corresponds to the right-traveling or right-evanescent wave n (1), and equation (4.9b) corre-

sponds to the leR-traveling or left-evanescent wave n (2).

As mentioned in the end of Section 2.2, for the purpose of numerical solution we truncate the infinite

domain [0, +cx_) in z and reduce it to the finite interval [0, Zma_]. The one-way Helmholtz equations (4.9)

can be used as boundary conditions for equation (4.7) on the interval [0, Zma_]. Indeed, if we want to make

sure that near both edges of the interval [0, Zma_] the solution is only composed of outgoing waves, then

we need to use relation (4.9a) as the boundary condition at z = Zmax and relation (4.9b) as the boundary

condition at z -- 0:

nz - i_/k'_n = 0 at z z Zmax , (4.10a)

nz + i_/rk_n = 0 at z = 0 . (4.10b)

Clearly, as the boundary conditions (4.10a) and (4.10b) each eliminate one of the two eigenfunctions n (1)

and n (2), the homogeneous version of equation (4.7) on [0, Zma_] (i.e., when fl - 0) with these two boundary

conditions is only satisfied by the trivial solution. Consequently, the non-homogeneous equation (4.7) with

boundary conditions (4.10) is uniquely solvable for any RHS f concentrated on the interval [0, Zma_]. From

the standpoint of physics, the resulting solution is only composed of waves due to sources located inside

[0, Zma_], which radiate to the right and to the left, but contains no incoming waves from sources outside

this interval. A solution of this type is said to satisfy the radiation principle.

4.2.2. Adding the incoming power. As has been mentioned, for the particular problem that we are

studying we also need to prescribe the incoming wave at z = 0, i.e., complement the radiation boundary

condition (4.10b) for the leR-traveling waves at z = 0 with a Dirichlet boundary condition (4.8) for the given

right-traveling wave, which altogether will yield the two-way ABC. In the continuous framework, this can be

done as follows. The incoming wave (4.8) gives rise to a solution of the form 0,1 i_k/_?_ Substituting thisUinc ¢ v , .

expression into the one-way Helmholtz equation (4.9b), we arrive at the following inhomogeneous relation

u_ +iv_lu=_i /_,e i'/_'_ o,lV /% v -, Uinc . (4.11)

As in the case of any inhomogeneous linear differential equation, the general solution to equation (4.11) can

be written as a sum of the general solution UH to the corresponding homogeneous equation (4.9b) and a

particular solution Up to the actual non-homogeneous equation (4.11):

U _ UH-_-Up .

0,1 iv/_ and theWe may pick the particular solution as the one generated by the incoming wave: Up = Uinc ¢ v , ,

general solution to (4.9b) is obviously given by UH = const • e-iV/_-_.

4.2.3. Obtaining the overall solution. In order to add the incoming power to the radiation solution,

we replace the homogeneous boundary condition (4.10b) with relation (4.11) interpreted as a boundary



conditionat the leftedgeoftheinterval:

2i at z =0. (4.12)

This implies that the overall solution will satisfy equation (4.7), subject to boundary condition (4.10a) at

z = Zmax and boundary condition (4.12) at z = 0. Indeed, by linear superposition principle, the overall

_10, l pikzzsolution can be written as the radiation solution with the incoming power added: u = Uradiation -_-_inc _ ,

where Uradiation satisfies (4.7) and (4.10). A similar derivation in the finite-difference framework is presented

in Section 6.5.

4.3. Nested iterations. In summary, our solution algorithm consists of two nested iteration loops.

On the outer loop (4.3) we perform iterations with respect to the nonlinearity for n = 0, 1, 2,... ,Af. On the

inner loop (4.4) we solve the linear equation with variable coefficients (which we obtain at each nonlinear

iteration) for m = 0, 1, 2,... , A//(n). The numbers A//= A//(n) and Af, at which we terminate the inner and

outer iteration loops, respectively, are determined experimentally in the course of iterations.

Our particular choice of solver for the linear variable-coefficient equation (4.3) is motivated by the

following two reasons:

(I) The inner loop iterations (4.4) require inverting a linear constant-coeJ_ficient operator (which is

the discrete analogue to £0) rather than a variable-coefficient one. As a result, the inversion can be

performed by a direct method that involves separation of variables and LU decomposition. Moreover,

the implementation of the radiation boundary conditions, including the two-way ABC at z = 0, is

particularly convenient to do with the operator £0.

(II) If we used some other linear Helmholtz solver, on each outer loop iteration (4.3) we would have had to

invert a different linear operator £Fn. However, using our particular linear solver involves a repeated

inversion of the same operator throughout both inner and outer loops. This implies that the actual

inversion can be performed only once in the very beginning and then the inverse operator, which is

stored in memory, can be applied repeatedly to the changing right-hand side. From the standpoint of

numerical efficacy this is beneficial because the inversion of the discretized £0 amounts to performing

LU decomposition of a family of sparse matrices obtained after the separation of variables. The result

of the LU decomposition is also sparse, hence its application to a given right-hand side has only

linear complexity. Since the number of iterations required for convergence is large (see Section 7),

this yields substantial savings of computer resources.

5. Discretization. We integrate the linear constant-coefficient equation (4.5) on a Cartesian grid of

variables (r, z) in the finite rectangular computational domain [0, rma_] × [0, Zmax]. Since the original physical

domain stretches all the way to z = +cx_, at the artificial boundary z = Zma_ we set a radiation boundary

condition that guarantees the reflectionless propagation of right-going waves (see Section 6). On the physical

boundary z = 0 we set a two-way radiation boundary condition that similarly guarantees the reflectionless

propagation of left-going backscattered waves and also correctly prescribes the right-going incoming signal

(Section 6). As concerns the transverse direction r, we assume that the solution vanishes at r = rma_:

E(rma_,Z) = 0 , z >_ O . (5.1)

Physically, this condition amounts to having a conducting surface at r -- rmax, which acts as a perfect

reflector. Therefore, we take rmax sufficiently large so that reflections from this boundary do not contaminate



thesolutionin theprimaryregionof interestnearr = 0. We also assume that E is symmetric with respect

to r = 0, i.e.,

E(r, z) = E(-r, z) , z >_ 0 . (5.2)

This assumption is physically plausible and allows us to consider only half of the domain [0, rmax] in the r

direction rather than the full domain [--rmax, rmax].

We use a uniform Cartesian grid with size hr and a total of M cells in the r direction (hr = rma_/M),

and size h_ and a total of N cells in the z direction (h_ = Zmax/N). Accordingly, the grid nodes are:

{(r,_,zn) r,_=rn.h_,zn=n.h_,m=O,l,...,M,n=O,l,...,N} . (5.3)

We discretize equation (4.5) using a fourth-order accurate central-difference scheme:

m,n h "m,n kgE,_=O,_ =0,1,.. ,M-l, =2,3,.. N-2, (5.4)
Lh_E .,_ + L_E,_, + , , , m . n .,

where

Lhrr E %n m_n

h

-Em-2,n + 16Em-1,n - 30Em,n + 16Em+1,n - Em+2,n

12h_

-Era,n_ 2 -_-16Era,n_ 1 - 30Era, n -_-16Era,n+ 1 - Era,n+ 2

12h_

(5.5a)

(5.5b)

The index n that corresponds to the coordinate z runs from 2 to N - 2 in equation (5.4) because the

stencil, which is five-node wide in each direction, obviously cannot be applied to any of the boundary nodes

n = 0, 1, N - 1, and N located near z = 0 and z = Zma_. The treatment of these near-boundary grid nodes

is discussed in Section 6 in the framework of the discrete radiation boundary conditions.

Similarly, the direct application of the transverse part L_h of the discrete operator in (5.4) may also

require a special treatment of the near-boundary nodes m = 0, 1, and M - 1. This treatment should take

into account the transverse boundary conditions at r = 0 (5.2) and at r = rmax (5.1). We can avoid this,

however, by expanding the solution E,_,_, for each n, in a finite series with respect to eigenfunctions of the
h

transverse discrete operator /5_r, which also satisfy the two boundary conditions (5.1) and (5.2) [this is a

discrete analog to the continuous Fourier expansion (4.6)]. This discrete eigenfunction expansion allows us

to treat the operator L_h in the transformed space from the very beginning and never implement it directly

on the grid. In addition, the radiation boundary conditions in the z direction are most natural to implement

in the transformed space separately for each longitudinal (i.e., z-aligned) mode, as we have seen in the

continuous formulation in Section 4.2.1.

We shall now derive the discrete eigenfunction expansion for E,_,_. Let us introduce the space of all grid

functions that are equal to zero at m = M, i.e.,

V={¢,_ m=0,1,...,M, _/)M:0}.

Clearly, for each n, the function E._ E V. We can define a weighted inner product on V:

1 1 M-1

(¢, ¢) =  ¢0¢0 + • (5.6)
m=l
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PROPOSITION5.1. Let us consider a family of M one-dimensional grid functions of the argument m:

_) = cos ((2k-1)mAO) ,
7rh r 7r

A0- 2rmax 2M ' k-- 1,2,... ,M. (5.7)

Then,

(I) {_)(k)}_V/=l C V.

(II) The functions ¢(k) are orthogonal with respect to the inner product (5.6), i.e.,

(¢(k),¢(_)) = 0 for k ¢ l. (5.s)

(III) The set {_/)(k)}M 1 forms a basis in V.

(IV) ¢(mk) are even functions of the argument m, i.e., symmetric with respect to m = O:

(V) ¢(k) are eigenfunctions of the transverse component of the finite-difference operator of (5.3) with

eigenvalues /_k, 4, i.e.,

1 [16sin2 ((2k 21)A0) _ I)A0)] (5.9)Lhr?) (k) = --Ak¢ (k) , Ak = _ sin: ((2k-

Proof. The inclusion (I) follows from the definition of the space V and the explicit form of the functions

_) (5.7). To show the orthogonality (II), we calculate

M--1 M--1

M. (¢(k),¢(I)) = E ¢_)¢_) 1 12 - E cos ((2k - 1)mA0) cos ((2l - 1)mA0) 2
mz0 mz0

1 M--1

=-_2
mz0

1

[cos ((2k + 2l - 2)mAO) + cos ((2k - 2l)mAO)] 2

M--1
1 1

= _ E [cos (2qmAO) + cos (2smAO)] 2
m:O

M--1
1 1

: 4 E ei2qmAO + e-i2qmAO + ei2smAO + e-i2smAO 2

m:O

l rl-ei2q MAO 1-e-i2q MAO ] l rl_e i2sMAO l_e-i2_MAO] l-_L I-_ + i-_ +_L i-_ + l-_ j-_=°

We indeed obtain zero, because out of the two integer numbers q = k + l - 1 and s = k - l one is always odd

and another one even, and thus one of the expressions in rectangular brackets on the last line in the previous

chain of equalities is always equal to zero and another one is equal to two. Property (III) follows easily

from the orthogonality (II) because the orthogonality implies that the M functions ¢(k), k = 1,... , M, are

linearly independent, and the space V is obviously M-dimensional. Property (IV) is trivial and immediately

follows from the definition (5.7). Finally, property (V), including the explicit expression for the eigenvalue

_k given in (5.9), is obtained by directly applying the operator Lrh of (5.5a) to each _(k), k = 1,... , M.

4Note that for small wavenumbers the discrete eigenvalues and eigenfunctions are similar to those in the continuous formu-

lation (cf. (4.6) and (4.7)) as )_k _ (k - 1/2)2(_r/rmax) 2 and ¢lr=mh,, ---- ¢_) ---- cos((k - 1/2)_rr/rmax).
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The application of Lhr to a _(k) in the near-boundary nodes requires using the symmetry property (IV) and

also noticing that all _(k), k = 1,... , M, are, in fact, antisymmetric with respect to rn = M, which again

immediately follows from the definition (5.7). •

Proposition 5.1 shows that the system {_(k)}M 1 forms an orthogonal basis of the space V, composed of

the eigenfunctions of the operator Lrh, which are symmetric with respect to m = 0 and vanish at m = M.

For all n we can construct the expansion with respect to these eigenfunctions according to

so that

M--1

1 E 1
Uk,n = (E.,n,¢ (k)} = _ o,n + _ E Em,n cos((2k-1)rnA0),

m=l

k = 1,2,... ,M, (5.10a)

M M

E,_,n = 2EUk,n cos((2k- 1)rnA0) = 2EUk,n¢_) ' m = O,I,...,M. (5.10b)
k=l k=l

Representation (5.10b) can be easily verified by directly substituting Uk,n of (5.10a) and performing the

transformations similar to those performed when proving Proposition 5.1. Obviously, formulae (5.10a) and

(5.10b) are particular versions of the direct and inverse discrete Fourier transforms, respectively.

The above eigenfunction expansion can be used to implement the transverse discrete differentiation along

with the boundary conditions at r = 0 and r = rmax. Indeed, if we expand E,_,n and the RHS (_,_,n in the

form (5.10b) with the coefficients Uk,n and fk,n, respectively, obtained using (5.10a), then, because of the

orthogonality of the eigenfunctions ¢(k) (5.8), we arrive at the following family of one-dimensional discrete

equations: 5

h k,n
LzzUk , . -- )_kUk,n -'_ k2Uk,n

--Uk,n-e + 16Uk,_-i -- 30Uk,n + 16Uk,_+l -- Uk,n+e + k_Uk n = fk,n (5.11)
12h_ ' '

k2c = k2 -- /_k , k=l,2,...,M, n=2,3,... ,N-2,

where the eigenvalues {Ak} are defined in (5.9). Each of the M equations of (5.11) is independent of the

others and will be solved separately using the methodology of Section 6. Having obtained the modal solutions

Uk,n for all k = 1, 2, ..., M, we then recover the overall solution E,_,_ by means of the inverse transformation

(5.10b).

5.1. Implementation of transformations (5.10) using FFT. It is convenient to implement the

direct and inverse transformations (5.10a) and (5.10b) using the standard discrete Fourier transform, for

which library subroutines optimized for performance are available (fast Fourier transforms). To do that, we

note again (see end of the proof of Proposition 5.1) that representation (5.10b) allows us to extend E,_,n for

any n beyond m = 0 and m = M using the explicit form of the basis functions ¢(k), see (5.7). The extension

for negative m's is symmetric with respect to m = 0, and the extension beyond m = M is antisymmetric

with respect to rn = M. For a given function E,_,_, m = 0, 1,... , M, it is convenient to extend it first anti-

symmetrically with respect to m = M (so that the function be defined for m = 0, 1,... , 2M), and then also

extend it symmetrically with respect to m = 0 (so that it finally be defined for m = -2M,... , 0,... , 2M).

5Note the analogy to (4.7).
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In doing so, we arrive at a periodic grid function with the period 4M. It is easy to see that for a function

extended in this particular way the standard discrete Fourier transform

2M--1
1

ul,n - 4M E E'_,ne-il'_AO' l =-2M,...,2M-1 , (5.12a)
m=--2M

reduces to (5.10a). Indeed, as E,_,n is real we will always have ulm = u-lm, and in this particular case the

symmetry with respect to m = 0 implies that all ulm are also real and thus ulm = u-lm. Consequently, we

can consider only 2M + 1 independent real coefficients ulm for l = 0, 1,... , 2M. Then, the antisymmetry

with respect to rn = M will yield that ulm = 0 for all even l = 0, 2, 4,... , 2M and we are thus left with only

the coemcients ulm for odd l = 1,3, 5,... , 2M - 1. In other words, we can rewrite (5.12a) as follows

M--1

1 E 1
ul,_= _ 0m+_ E E,_,n cos(lrnA0), l=1,3,...,2M-1,

rn=l

and conclude that it indeed coincides with (5.10a) if we change notations from l = 1, 3, 5,... , 2M - 1 to

k = (l + 1)/2, k = 1, 2,... , M. Similarly, it is easy to see that because of the aforementioned properties

of ulm (ulm = u-lm, ulm real, and ulm = 0 for l = 0, 2, 4,... , 2M), the standard inverse discrete Fourier

transform

reduces to (5.10b).

2M--1

Ex_n 1
' - 4M E ul_e *l'_a°, m=-2M,...,2M, (5.12b)

l=--2M

6. The one-dimensional discrete Helmholtz equation. In this section we analyze the discrete one-

dimensional linear hon-homogeneous Helmholtz equation (5.11), paying special attention to the treatment

of the boundary conditions for z = 0 and z = Zmax. We recall that the boundary conditions at z = Zmax

should guarantee that this boundary be transparent for all waves traveling to the right (i.e., a standard

radiation ABC). The boundary conditions at z = 0 should guarantee that this boundary be transparent for

all backscattered waves traveling to the left, and at the same time impose the given incoming wave field

(two-way ABC). We emphasize that we have not discussed a particular discrete form of these boundary

conditions until now, since typically the ABCs are most convenient to set in the transformed space rather

than original space [28].

To simplify the notations, we drop the subscript k, so that equation (5.11) takes the form

-un-2 + 16Un--1 -- 30Un + 16Un+l -- Un+2
+k_u_=f_, n = 2,3,... ,N-2. (6.1)

12h 

Equation (6.1) is a fourth-order difference equation. It is obtained, however, as a fourth-order accurate

difference approximation to the second-order differential equation. Therefore, compared to its original con-

tinuous counterpart, the difference equation (6.1) requires additional boundary conditions. A total of four

boundary conditions are needed to guarantee the solvability and uniqueness for equation (6.1). Two extra

boundary conditions that are not present in the continuous case are a pure numerical artifact. They are

accounted for by the presence of two extra evanescent waves among the solutions of the homogeneous version

of equation (6.1) in addition to the two standard traveling or evanescent waves (see Section 6.1). Altogether,

these four boundary conditions should ensure the desired behavior of the solution near z = 0 and near

z = Zma_. We also reiterate that the finite-difference equation itself obviously cannot be written in the form
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(6.1) for the grid nodes n = 0, 1, N - 1 and N. A special form of the discrete equation for these four grid

nodes is therefore required; this special form will actually constitute the boundary conditions and make the

total number of equations in the linear system be equal to the number of unknowns.

6.1. The discrete homogeneous problem. We start by analyzing the homogeneous counterpart to

the finite-difference equation (6.1) over an infinite grid domain, i.e.,

--Un-2 + 16Un-1 -- 30Un + 16Un+1 -- Un+2
+k_un=O, n=0,±1,±2,.... (6.2)

12h_

PROPOSITION 6.1. Let _ = (h_kc) 2 be such that either 0 < a < 16/3 or -3 <_ _ < O. Then, the general

solution to equation (6.2) has the form

Un = Clq_ -b c2q_ + C-lql n -b c-2q_ _ , (6.3)

where Cl,C2,C_1, and c_2 are arbitrary constants, and ql and q2 are roots of the characteristic equation that

corresponds to (6.2).

In addition,

(I) When 0 < a < 16/3, q_ and ql n are waves propagating to the right and to the left, respectively. In

particular, when 0 < a _ 1, then

ql : cikch_ + 0 ((]gc " hz) 5) , (6.4a)

q2 = e -ikch_ + (9 ((k_. h_) 5) , (6.4b)

and as such, q_ and ql _ are the discrete analogues of the right and left traveling waves eik_ and

e -ik_, respectively, with fourth-order accuracy.

(II) When -3 <_ a < O, q_ and ql _ are evanescent waves decaying to the right and to the left, respectively.

(III) In both cases, i.e., for 0 < a < 16/3 and for -3 <_ a < O, q_ and q_ are evanescent waves decaying

to the right and to the left, respectively.

Proof. Let us introduce the characteristic algebraic equation

-1 + 16q + (12a - 30)q 2 + 16q 3 - q4 _- 0 (6.5)

for the homogeneous finite-difference equation (6.2). It is generally known (see, e.g., [14]) that if all the roots

qj of a given characteristic algebraic equation are distinct, then the general solution to the corresponding

homogeneous finite-difference equation is obtained as a linear span of the grid functions q_, where the power

n is determined by the grid location. In the specific case that we are studying equation (6.5) is a quartic

q 4algebraic equation and thus provided that its four roots { J}j=l are distinct, the general solution to the

homogeneous equation (6.2) has the form

Un = Clq_ -b c2q_ + c3q_ + Cnq_ , (6.6)

where 4{cj}j= 1 are arbitrary constants.

q 4Hereafter, we restrict ourselves only to the case when the roots { J}j=l of equation (6.5) are distinct.

q 4By explicitly calculating { J}j=l (see below), we will show that multiple roots are only possible for the two

cases (_ = 0 and (_ = 16/3, which are easy to avoid in practical computations.

To simplify the actual calculation of the roots of quartic equation (6.5), we first note that by dividing

(6.5) by q4 we arrive at exactly the same equation for 1/q. Therefore, if q is a root, then q-1 is also a root
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(this follows, of course, from the fact that the discretization (6.1) is symmetric). Accordingly, we rename

the four roots of equation (6.5): ql, q2, ql 1, and q21, and write:

- 1 + 16q + (12a - 30)q 2 + 16q 3 - q4 = _(q _ ql)(q -- qll)(q -- q2)(q - q_-l) =

_ (q2 _ dlq + 1)(q 2 - d2q + 1) = -1 + (dl + d2)q- (2 + dld2)q 2 + (dl + d2)q 3 - q4 ,
(6.7)

where

dl = ql -q-ql I , d2 = q2 + q_-i . (6.8)

By comparing the beginning and the end in the chain of equalities (6.7) we obtain the following system of

equations for dl and d2:

dl + d2 -- 16 , - 2 - did2 = 12a - 30 ,

from which we find that

dl = 8-6V/1 + oz/3, d2 = 8 + 6v/l+ oz/3 . (6.9)

From formulae (6.9) we conclude that both dl and d2 are real provided that a _> -3. If, for example,

hr _ h_ (the cell aspect ratio of the discretization is close to one), then the definition of kc (see (5.11)),

where Ak is given by (5.9), along with the definition of a = (h_k_) 2, suggest that even for negative a's their

absolute values are sufficiently small and thus we can always assume that a _> -3 and consequently, consider

dl and d2 real. However, allowing for the complex values of dl and d2 may only make the analysis more

cumbersome, but does not change any of the results hereaRer. This, in particular, is corroborated by the

computations of Section 7.1, which were conducted on the grids with cell aspect ratios 20/1 and 20/3.

From (6.8) we have that qj and q21 are the roots of the quadratic equation

q2_djq+l=O, j=1,2. (6.10)

Let us analyze the case j = 1 first. For 0 < a < 16/3, equation (6.10) has two complex conjugate roots

dl + iv/4 - dl2 dl -- i 4V/4_--dl2 (6.11)
ql = 2 ' qll --- 2

From (6.11) it follows that Iqll = Iqlll = 1 and, in addition, that when 0 < a << 1 then (6.4) holds.

When -3 _< a < 0, we have

dl -- V_I -- 4 dl + _ - 4 (6.12)
ql -- 2 ' qll -- 2

Therefore, both roots are real and satisfy Iqll < I and Iqlll > 1, showing that q_ and ql n of (6.12) are discrete

analogues of two evanescent waves. We note that as a changes from positive to negative in formulae (6.11),

the right-propagating wave q{_ changes into an exponential decreasing to the right and the left-propagating

ql n wave changes into an exponential decreasing to the left, a fact that simplifies the identification of the

right and left traveling and decaying waves in the actual implementation of the boundary conditions at z = 0

and z = Zma_.

It still remains to consider the case a _> 16/3. For the positive values of k_, we can introduce the

wavelength Ac = 27r/k_ and for this range of a obtain A_/h_ _< v_Tr/2. Thus, we see that a _> 16/3 implies
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a poor "pointsperwavelength"resolutionevenfor the longwavesAc> A0= 27_/ko.This makesthe
choicea _>16/3inappropriatefor practicalcomputations.Finally,regardingthelastcasethat hasnotbeen
consideredyet,a -- 0,wenotethatforthisvalueof a equation(6.10)will haveadoublerootql -- q-1 -- I.

However, formulae (5.9) and (5.11) show that the case a -- 0 _ kc2 -- 0 can be easily avoided by slightly

changing the parameters of the discretization.

For j -- 2, we find from equation (6.10) that

d2 - X/r_2 - 4 d2 + V/_22 - 4
q2 - , q21 --2 2 (6.13)

Clearly, Iq21 < 1, Iq211 > 1 for all relevant values of a (a _ -3), i.e., the two components q_ and q_-n of

(6.13) always correspond to evanescent waves. •

6.2. Discrete one-way Helmholtz equations. In analogy with the continuous description in Sec-

tion 4.2.1, we now construct the discrete one-way Helmholtz equations based on the solution (6.3) of the

homogeneous finite-difference scheme (6.2). From the very beginning, we think of these discrete one-way

Helmholtz equations as the relations to be used as boundary conditions for equation (6.1).

According to Proposition 6.1, the discrete homogeneous equation (6.2) has four linearly independent

eigenfunctions, two of which are either traveling or evanescent waves and two others are always evanescent

waves; the presence of the latter (in contrast to the continuous case) is due to the fact that (6.2) is a

fourth order finite-difference equation that approximates the original second-order differential equation.

When constructing the discrete one-way Helmholtz equations, we, of course, first need to make sure that

they handle the first pair of discrete waves, q_ and ql n, in the same way that equations (4.9) handle

the corresponding continuous waves. In addition, we need to decide how the discrete one-way Helmholtz

equations will handle the second pair of discrete waves, q_ and q_-_, which are purely numerical (i.e., due

to the use of a forth-order difference scheme). It is natural to require that the one-way-to-the-right discrete

Helmholtz equation admit the right traveling/evanescent wave q_ and the right evanescent wave q_ and that

the other two waves from representation (6.3), ql _ (left traveling/evanescent) and qy_ (left evanescent) be

suppressed by this equation. Indeed, ql _ may either be traveling "the wrong way" or grow without bound

as n ---+ +cx_ and q_-n will always grow without bound as n --+ +cx_. 6 Clearly, if we use the one-way-to-the-

right equation that possesses such properties as boundary condition for (6.2) near n = N, it will guarantee

that the corresponding far-field solution (n > N) always be bounded at infinity and also that this solution

may only be composed of outgoing (right propagating and/or right decaying) waves. In other words, the

one-way-to-the-right discrete Helmholtz equation implies that in the far field n > N one can represent the

solution u_ in the "restricted" form

Un = clq_ + c2q_ , (6.14)

as opposed to the general form (6.3). Formula (6.14) is equivalent to requiring that the vector
2 3 2 3

[UN-3, UN--2, UN--1, UN] be a linear combination of the two vectors [1, ql, ql, ql] and [1, q2, q2, q2], which

is the same as requiring that

I UN--3 UN--2 UN--1 UN 1

Rank 1 ql ql 2 ql3 = 2. (6.15)

1 q2 q22 q3

6Besides being "natural," this choice is also motivated by the well-posedness considerations, as the analysis of [13,20]

suggests.
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Relation (6.15) immediately yields the following two linearly independent conditions

det
UN--3 UN--2 UN--1 ] [ UN--2 UN--1 UN

1 ql q_ --0, det ql q_ q_ --0,

1 q2 q_ q2 q_ q_

which reduce to

qlq2UN--3 -- (ql -_- q2)UN--2 -_- UN--1 = 0 (6.16a)

and

qlq2UN--2-- (ql -_-q2)UN--I-_-UN =0 . (6.16b)

The two scalar equations (6.16a) and (6.16b) constitute the one-way-to-the-right discrete Helmholtz equation.

The one-way-to-the-left discrete Helmholtz equation is constructed similarly. Symmetrically to the

previous case, we require that it admit the left traveling/evanescent wave ql n and the left evanescent wave

q_n and that the other two waves from representation (6.3), q_ (right traveling/evanescent) and q_ (right

evanescent) be prohibited by this equation. (From the standpoint of physics the two waves, ql _ and qy_,

account for the phenomenon of backscattering.) The waves q_ and q_ are to be suppressed in this case

because q_ may either be traveling "the wrong way," i.e., to the right, or grow without bound as n --+ -oc

and q_ will always grow without bound as n --+ -oc. If the one-way-to-the-left discrete Helmholtz equation

is used as boundary condition for (6.2) near n -- 0, it will guarantee that the corresponding far-field solution

(n < 0) always be bounded as z -+ -oc, and also that this solution may only be composed of outgoing

(left propagating and/or left decaying) waves. In other words, the one-way-to-the-left discrete Helmholtz

equation implies that in the far field n < 0 one can represent the solution un in the "restricted" form

Un z C_lqlnn + c_2q2 n , (6.17)

as opposed to the general form (6.3). To make sure that representation (6.17) hold, we require that the

vector [Uo, Ul, u2, u3] be a linear combination of [1, ql 1 , ql 2, ql 3] and [1, q21 , q22 , q23]:

I ?tO Ul U2 U3 1
Rank 1 ql I ql 2 ql 3 --- 2 . (6.18)

1 q21 q_-S q_-3

Relation (6.18) is equivalent to the following two linearly independent homogeneous conditions:

U0 -- (ql + q2)Ul + qlq2U2 : 0 (6.19a)

and

Ul --(ql +q2)u2+qlq2U3 =0 , (6.19b)

which constitute the one-way-to-the-left discrete Helmholtz equation.

We note that splitting the general solution (6.3) into right- and left-going waves (equations (6.14) and

(6.17), respectively), and allowing for only one direction while prohibiting the other at the corresponding

edges of the interval constitutes the radiation principle in the finite-difference discrete framework.
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Havingconstructedthe one-waydiscreteHelmholtzequations(6.16)and (6.19),wenowimplement
themasboundaryconditionsfor thediscretehomogeneousequation(6.2). If weconsiderthefinitegrid
n = 0, 1,... , N on the interval [0, Zmax], the five-node difference stencil cannot be centered at the near-edge

nodes n = 0, 1, N - 1, and N. As a consequence, the number of equations in the linear system is less than

the number of unknowns by four. To make the number of equations and the number of unknowns equal,

we supplement equations (6.2) on the grid n = 2,3,... ,N - 2 by equations (6.19a) and (6.19b) for n = 0

and n = 1, respectively, and by equations (6.16a) and (6.16b) for n = N - 1 and n = N, respectively. In

doing so, we arrive at the following linear homogeneous algebraic system with N + 1 equations and N + 1

unknowns:

Au= 0 , (6.20)

where

1
A-

12h_

1 -(ql+q2) qlq2 0 0 ... 0

0 1 -(ql +(/2) qlq2 0 ... 0

-1 16 (12a-30) 16 -1 ... 0

".. ".. ".. ".. "..

0 ... -1 16 (12a - 30) 16 -1

0 ... 0 qlq2 -(ql + q2) 1 0

0 ... 0 0 qlq2 -(ql + q2) 1

(6.21)

and, obviously, u = [u0, Ul,.. • , UN] T.

The following Proposition 6.2 establishes the solvability and uniqueness of the solution for the non-

homogeneous counterpart of system (6.20).

PROPOSITION 6.2. The linear non-homogeneous system of equations Au = f with the matrix A given

by (6.21) is uniquely solvable for any right-hand side f = [f0, fl,... , fN] T.

Proof. We show that the corresponding homogeneous system (6.20) has only trivial solution. Indeed, the

only solution to any of the equations of Au = 0 except the first two and the last two is a linear combination

of the type (6.3). However, each of the components of (6.3) is explicitly eliminated by one of the boundary

conditions (6.16a), (6.16b), (6.19a), or (6.19b), i.e., by one of the one-way discrete Helmholtz equations (the

first two and the last two equations of Au = 0). Therefore, the only solution to the homogeneous system is

the trivial one. 7 •

Although we have just shown that one can find the solution to Au = f, for any given f = [f0, fl, • • • , fN],

this solution will not, in fact, correctly approximate the corresponding solution of the non-homogeneous

differential equation, or in other words, will not, generally speaking, be the discrete radiation solution from

the sources f = [f0, fl,... , fN]. The reason for this discrepancy is that the one-way Helmholtz equations

which are used in the first two and last two rows of the matrix A have been constructed for the homogeneous

case. As a result, these four equations will not handle correctly the near-boundary source terms, which may,

generally speaking, be present. The "cure" to this problem, in the form of a a local modification to f, is

derived in Section 6.4.

7This solvability result is obviously similar to the one in the continuous case, see Section 4.2.1.
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In oursimulations(seeSection7), wesolvethefinite-differenceHelmholtzequationby invertingthe
matrixA of (6.21). However, for the purpose of deriving the two-way ABCs that would correctly handle the

near-boundary inhomogeneities, we now show how to construct the solution u by using the Green's function

of the finite-difference operator of (6.2). As we shall see, this approach is rather expensive numerically and

thus not useful for actual computing. However, it provides the most conceptually straightforward way to build

the radiation solution. Moreover, the analysis that employs the Green's function reveals the mechanism of

the aforementioned discrepancy between the radiation from the sources if = If0, fl,.. • , fN] and the solution

to Au = if.

6.3. Radiation solution by means of the Green's function. In this section, we introduce a

problem very similar to (6.1), except that the solution u is now defined on the infinite grid n = 0, ±1, ±2,...,

and the right-hand side f_ is compactly supported:

-Un-2 + 16Un--1 -- 30Un + 16Un+l -- Un+2
+k2cUn=fn, n=0,±l,±2,... ,

12h (6.22)
f_=O for n<O and n>N.

We also require that the solution un of (6.22) satisfy the radiation principle in the areas of homogeneity

n < 0 and n > N. In other words, we require that for n _< 0 one can represent un in the form (6.17) and for

n _> N in the form (6.14). This is the most general formulation of the problem of finding the solution that

corresponds to the radiation of waves by the sources if -- If0, fl,... , fN]T in the finite-difference framework.

To solve this problem, we introduce the fundamental solution G n (free-space Green's function) for the

one-dimensional discrete Helmholtz operator, which is defined on the entire infinite grid n = 0, ±1, ±2,...

and is the solution of the equation

where

-G n-2 + 16G n-1 _ 30G n + 16G n+l _ Gn+2 2 n
+ keg = (_n,

12h_

6n={ 1, n=00, n#O

n = 0,-4-1, +2,... , (6.23)

We also require that the Green's function G _ satisfy the radiation principle as n -+ 4-oo, or in other words,

that it can be represented in the following form:

G n = _ alq_ + a2q_, n >_ 0
blql n -n _ (6.24)( + b2q2 , n<0

PROPOSITION 6.3. The values of the constants 61, a2, bl, b2 in (6.24) are given by

12h2zq1 (6.25a)
61 = (q21 _ ql)(ql I _ ql)(q2 - ql) '

-12h2zq2 (6.25b)
a2 -- (q21 _ q2)(ql I _ q2)(q2 - ql) '

-12h2q11 (6.25c)
bl -- (q21 _ qll)(qll _ q2)(ql 1 _ ql) '
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12h2q21 (6.25d)
b2 = (q_-i _ qll)(q_-i _ q2)(q_-i _ ql)

Proof. To find these four constants, we need four equations. By matching the two branches (6.24) of the

Green's function G n at n = 0 we immediately obtain one equation

al + a2 = bl + b2 • (6.26a)

The other three equations for the coefficients of (6.24) are obtained from the original equation (6.23) written

for the nodes n = 0, 1 and -1. For n = 0 we have

-G -2 + 16G -1 + (12a- 30)G ° + 16G 1 - G 2 = 12h2z ,

or

-- (blq 2 + b2q 2) + 16 (blql -_- b2q2) -_- (12a - 30)(al -_- a2) -_- 16(alql -_- a2q2) - (alq 2 + a2q 2) = 12h_.

The previous equation can be simplified by subtracting from it the following relation

- (alql 2 -_-a2q22) -_- 16 (alql 1 -_- a2q21) -_- (12a - 30)(al -_- a2) -_- 16(alql -_-a2q2) - (alq 2 + a2q 2) = 0,

which comes from the fact that each branch of the Green's function (the right branch alq_ + a2q_ in this

particular instance) satisfies the homogeneous finite-difference equation (6.2). The subtraction yields:

--1 --2
-- (blq_ + b2q_) + 16 (blql -_- b2q2) - 16 (alql 1 -_-a2q2 ) + (alql 2 -_-a2q2 ) = 12h_. (6.26b)

For n = 1 equation (6.23) takes the form

-G -1 -_- 16G ° + (12a - 30)G 1 -_- 16G 2 - G 3 = 0

and again, using the homogeneous equation for the right branch of the Green's function, we obtain

- (blql -_- 52(/2) -_- (alql 1 -_- a2q2 -1) = 0. (6.26c)

Finally, for n -- -1 we have

-G -3 + 16G -2 + (12a - 30)G -1 -_- 16G ° - G 1 = 0 .

Combining this relation with the homogeneous difference equation for the left branch of the Green's function,

we arrive at

(blql 1 -_- b2q21) - (alql -_- a2q2) = 0. (6.26d)

Now we need to solve equations (6.26) for al, a2, bl, b2. First, we multiply (6.26c) by 16 and substitute

it into (6.26b) and then rewrite all four equations as follows

ql 2 q_-2 _ql 2 _q_

ql I q21 --ql --q2

1 1 -1 -1

ql q2 --ql 1 --q21

al

a2

bl

be

12h_

0

0

0

(6.27)
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The determinant of system (6.27) is easily reduced to a Vandermonde determinant, which eventually leads

to expressions (6.25). •

From the definition of G n, we have the following

PROPOSITION 6.4. For any given right-hand side fn compactly supported on [0, 1 .... ,N], the solution

to (6.22), subject to the radiation principle, is given by the convolution

m=N

un = Z /"_G_-'_ ' n --- 0, ±1, ±2,.... (6.28)
m=0

6.4. Radiation solution by means of inverting the matrix A. The cost of calculating the con-

volutions in (6.28) for n = 0, 1,... ,N is (_9(N2). We now show that the portion of the solution (6.28) that

we are interested in, namely, u_ for n = 0, 1,... , N, can be recovered by means of inverting the matrix A

of (6.21). The cost of this inversion will be only (_9(N) operations because the matrix A is pentadiagonal,

see Section 6.7 for additional detail.

PROPOSITION 6.5. Let A be defined by (6.21) and u = [u0,ul,... ,UN] T

n --- 0, 1,... , N. Denote if --- If0, fl,..., fN-1, fN] T. Then, Au = f, where

def

0

0

f_

fx-2

0

0

be defined by (6.28) for

- ~ .

fo
~

fl
0

+ ! , (6.29)

0

IN-1

fN

 def1[ ]12h_ (f°G° + fiG-l) - (ql -_- q2) (fo G1 -_- fl G0) -_- qlq2 (fo G2 -_- fl G1) ,
(6.30a)

ldef 1 [= 12h2z (fo G1 + fig 0 + f2G -1) -- (ql + q2) (f0 G2 + fl G1 -k- f2 G0) -k-

qlq2 (f0 G3 + fig 2 + f2G 1) ] ,

(6.30b)

and

/N def

/N--1 de f 1 [12h_ qlq2 (fN-2G -1 + fN-1G -2 + fNG -3) --

(ql Jr- q2) (fN--2a 0 Jr- fN--la -1 -'_ fNa -2) -'_ (fN--2a I Jr- fN--la 0 -'_ fNa -1) ] ,

1[ ]12h2 z qlq2 (fN-la -1 + fNa -2) -- (ql + q2) (fN--la 0 + fNa -1) + (fN--la I + fNa O) •

(6.30c)

(6.30d)
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Proof. By definition of the Green's function G n (see Section 6.3), (Au)n = f_ for 2 _ n _ N - 2.

Indeed, for 2 < n < N - 2 we have

12h_ (Au)n = - Un--2 + 16Un--1 + (12a -- 30)Un + 16Un+1 -- Un+2

N N N

= - E f_G_-2-'_ + 16 E f'_G_-l-'_ + (12(_- 30) E f_G_-'_
m=0 m=0 m=0

N N

+16Z f - Z
m=0 m=0

N

= Efm ( -Gn-2-m + 16Gn-l-m -6 (12c_ - 30)G n-m -6 16G n+l-m -G n+2-m)

m=0

N N

= E 12h_6__,_f_ = 12h_ E f_6_-'_ = 12h_f_.
m=O m=O

As for (Au)0 , (AU)l , (AU)N_I, and (AU)N , these four components need to be calculated separately.

They will, generally speaking, differ from f0, fl, fN-1, and fN, respectively, because of the special structure

of the first two and the last two rows of the matrix A, which admit waves going in only one direction, see

Section 6.2.

We start the analysis from the left edge of the interval. Clearly, any f_ for m _ 2 is not going to

contribute to (Au)o because when substituting u of (6.28) into (6.19a) we, in fact, substitute only the left

branch of the Green's function G _-'_, see (6.24). Indeed, in formula (6.19a) we only need the values of un

for n = 0, 1, 2, and if m _> 2 this implies n - m _< 0. The left branch of the Green's function (6.24) by

definition turns (6.19a) into an identity, therefore (Au)o is not affected by f,_ for m _ 2. Consequently,

(A_t)o = (A [foG n -6 flGn-1])o ,

which proves (6.30a). Similarly, substitution of the left branch of the Green's function into (6.19b) suggests

that any f_ for m _ 3 is not going to contribute to (AU)l. Therefore,

(Au)I = (A [fo Gn -6 fig n-1 -6 f2Gn--2])l ,

which proves (6.30b).

Similar analysis is conducted for the right edge of the interval. Only fN and fN-1 affect (AU)N = IN

because for all other components of the RHS f the contribution to the solution u at n = N - 2, N - 1, N is

given by the right branch of the Green's function only; then the explicit form of the solution (6.28) and the

definition of A (6.21) easily yield expression (6.30d). Analogously, only three components of the right-hand
~

side, fN, fN--1, and fN-2, contribute to (Au)N-1 = fN-1, which together with (6.28) and (6.21) implies

(6.30c). •
From the standpoint of the original physical model the situation near z = Zmax differs substantially

from the situation near z = 0, because we can always make the effect of nonlinearity and/or variation of

coefficients near z = Zmax negligible, by taking Zmax sufficiently large. Therefore, from here on we will always

assume that fN = fN--1 = fN--2 = 0. Obviously, if we use the RHS f = [fo, fl,... ,fN-3,0, O,O]T of this

particular kind as source terms in (6.22), then for the corresponding solution u = [u0, Ul,... , UN] we will

have (AU)N_ 1 ----IN-1 ----0, see (6.30c), and (AU)N ---- fN ----0, see (6.30d). In other words, the modified

hight-hand side ? of (6.29) in this case becomes ? = If0, fl, f2,... , fN-3, 0, 0, 0]T.
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Let us emphasize that ]0 = (Au)0, see (6.30a), depends on f0 and fl, and ]1 = (An)l, see (6.30b),

depends on f0, fl, and f2. Likewise, in order to obtain IN-1 = (AU)N_I = 0, see (6.30c) and IN =

(AU)N = 0, see (6.30d), in addition to the obvious requirement that fN = fN--1 = 0, we also need to impose

fN-2 = O.

Propositions 6.2 and 6.5 guarantee that the only solution of the linear system Au = f, where f =

[]0, fx, f2,. • • , fN-3,0, 0, 0] T, is the solution u of (6.22) with the RHS f = If0, fx, f2, • • • , fN-3,0, 0, 0] subject

to the radiation principle. Thus, we have addressed the concern raised in the end of Section 6.2, namely,

which modifications to the right-hand side f are needed so that the solution obtained by inverting the matrix

A will coincide with the pure radiation solution from these particular sources f. Provided that near the

right edge of the interval the RHS is zero: fN = fN--x = fN--2 = 0, it turns out that these modifications are

local and require only the replacement of the two old quantities f0 and fx near the left edge of the interval

by the new quantities ]0 and ]1, respectively. It is also important to mention that formulae (6.30a), (6.30b)

are by themselves local as well, and therefore the overall modification f _-+ f amounts to only local, and

thus numerically inexpensive, operations on the grid near n = 0.

6.5. Adding the incoming power. The boundary conditions at z = 0 should guarantee the complete

transparency of this boundary for all backscattered waves and at the same time be capable of accurately

prescribing the incoming signal; the combination of these two properties has been referred to as the two-

way ABCs. Similarly to the continuous case analyzed in Section 4.2.2, the incoming signal U0nc results in

a forward propagating wave, given by 0 n 0Uincq I . The grid function v_ - Uincq I solves all equations of the

homogeneous system Av = 0 except for the first two, which are the one-way-to-the-left discrete Helmholtz

equation (6.19). Therefore, by applying the matrix A of (6.21) to the vector v we create a right-hand side

that we denote by g. It is easy to see that

Ui0nc

g- 12h_

1- (ql -_-q2)ql "_-q_q2

q1(1--(q1 -_-q2)ql "_-q_q2)

0 (6.31)

Proposition 6.2 guarantees that the only solution of the system of equations Av -- g, where g is given by
0 n

formula (6.31), is v = Uincq 1 . Note, the inhomogeneity g of (6.31) is a discrete counterpart of the right-

hand side of relation (4.12) (and (4.11)) obtained when introducing the incoming signal in the continuous

framework, see Sections 4.2.2 and 4.2.3.

6.6. Obtaining the overall solution. We can, finally, put together the foregoing stages of the deriva-

tion. Assume that there is a given RHS of the original equation (6.1) f = If0, fl, f2,..., fN-3,0,0, 0] T.

To obtain the solution with the incoming power 0Uincq 1 added, we first construct the new RHS f on the

basis of f according to formulae (6.29) and (6.30a), (6.30b). Then, we construct the additional source terms

g according to formula (6.31). Due to the linear superposition principle and according to Proposition 6.2

that guarantees solvability and uniqueness, we immediately see that the grid function u that we recover by

solving the overall system

Au = ? + g , (6.32)

is the solution that we are looking for. Indeed, including f on the right-hand side of (6.32) guarantees the

radiation from the original sources f both to the left and to the right and including g on the right-hand side
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of (6.32) guarantees that the correct incoming signal 0 nUincq 1 will be added. The system (6.32) is, of course,

solved by inverting the matrix A only once and not by solving separately with the RHSs f and g.

Thus, setting the desired boundary conditions at z = 0 and z = Zmax is reduced to building and inverting

the special matrix A of (6.21) and also modifying the right-hand side of the equation f _-+ f + g. We again

emphasize that the latter modification is not computationally expensive as both f and g are obtained by only

local operations on the grid near n -- 0. These operations will come at virtually no cost when implementing

the algorithm numerically.

To conclude this section we note that the solvability and well-posedness analysis of general one-

dimensional systems of finite-difference equations can be found in [13, 20].

6.7. Solution of Au = f + g. We solve the system Au = f + g using standard LU decomposition;

for a pentadiagonal matrix A the components of this decomposition will obviously be banded as well. As

the equation Au = f + g needs to be solved many times with changing source term but with the same A,

at the beginning of a simulation we calculate once the LU decomposition of A, and use it throughout the

iterations. Therefore, the costs per iteration in terms of solving this equation are only due to the backward

substitution, which is O(N) arithmetic operations.

7. Numerical experiments. To assess the numerical performance of our algorithm, we first solve a

linear problem with variable coefficients in several different settings.

7.1. Linear problem with variable coefficients and backscattering. On a slender rectangular

domain in the (r, z) coordinates, [0, rma_] × [0, Zmax], where rma_ = _/2 is fixed, and Zma_ will vary as an

essential part of testing the methodology, we are recovering the following solution:

E = Eright -_- C" Elef t , (7.1)

where C is a constant, and the right and left propagating components Eright and Eleft are given by:

gright = C i_z cos(Pr) [1 + _z4c -z] , (7.2a)

Eleft ---- e -i_z cos(ur)e -(_/_)2 • (7.2b)

In the framework of our study, the left propagating component Eleft of (7.2b) is interpreted as backscattering.

Several parameters that control the actual shape of the solution (7.1) are: k0 is the wavenumber that

corresponds to the homogeneous medium, see Sections 1 and 2; u is the transversal frequency; e in (7.2a)

determines the extent of deviation from the constant-coefficient case for the right propagating mode (see

below); and/3 in (7.2b) determines the spatial (longitudinal) extent, to which the backscattered waves are

present in the solution. In the linear case we, of course, introduce the backscattered waves artificially, but

we are trying to follow the physically interesting situation when these waves are generated inside the domain

and propagate toward and through the left boundary z = 0. The constant C is introduced in (7.1) so as to

control the magnitude of the backscattered signal relative to the forward propagating signal and in particular

to be able to fully eliminate backscattering (C = 0) if desired.
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SubstitutingEright of (7.2a) into equation (4.5a), we obtain:

2E cei_ cos(ur)e-_z2 [2iv_ o u2(4z z2) +12-8z + z 2]AEright + k o right : -- --

e-_z 2 [2i_ (4z- z 2) + 12-8z + z 2] (7.3)

= e 1 -4- _ • z4¢ -z Eright

: --_k2Fright " Eright •

We therefore conclude that Eright of (7.2a) satisfies the variable-coefficient equation

2 E ,AEright -4- kright (Z) right z 0

where kr2ght(Z) ----k_(1-4-_Fright(Z)) and Fright(Z ) is defined by equalities (7.3). We indeed see that e controls

the extent of spatial variation of the wavenumber kright. The solution Eright is driven by the incoming wave

Einc : ¢i_ z cos(pr) , z _< 0 . (7.4)

Similarly, the backscattered solution Eleft of (7.2b) satisfies the variable-coefficient equation

AEleft -4- k2eft(Z)Eleft : 0 ,

where k_eft(z ) = k_(1 + Fleft(z)) and

1[ Vf _ z 2 4z 2 ]Fleft(z) = -k_ 4i _ u2 5 2 + _-J

For the overall solution E of (7.1) we obviously have

AE + k2(z)E = 0 ,

where

(7.5)

(7.6)

• Eleft

2 Eright k2ef t C Ek 2 (Z) : kright _ -4-

The driving incoming signal for equation (7.6) is Einc of (7.4), evaluated at z --- 0. The variable-coetTicient

linear equation (7.6) for E will be solved on the domain [0, rmax] × [0, Zma_,] with the homogeneous radiation

boundary condition (4.10a) at z -- Zmax and non-homogeneous (two-way) radiation boundary condition (4.12)

at z -- 0. The boundary conditions at r -- 0 and r -- rmax are symmetry and zero Dirichlet, respectively,

which corresponds to the general construction of Section 5, as well as the particular explicit form of the

solution (7.1), (7.2) that we use here. The solution will be obtained by iterations described in Section 4.2;

the corresponding discrete solution methodology is delineated in Sections 5 and 6.

Our primary goal when solving numerically the foregoing linear problem is to demonstrate that the

algorithm that we have constructed indeed possesses the design properties, i.e., (1) converges with the

fourth order of accuracy when the grid is refined, and (2) properly handles the radiation of waves (including

backscattering) or in other words, introduces no reflection from the boundaries z -- 0 and z -- Zmax back into

the domain. A secondary goal is deriving the guidelines for subsequent nonlinear simulations, for example,

how geometric parameters, such as domain size, may affect the solution.

The forthcoming series of computational experiments corroborates our expectations in terms of grid

convergence and handling the backscattered waves, and also provides for a comparison between the following

two algorithms: The one constructed in this paper with the two-way ABC at the boundary z -- 0 and a

more traditional one with the Dirichlet boundary condition at z -- 0 (at the far-field boundary z -- Zmax we

set the same radiation ABC in both cases).
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7.1.1. Traditional approach -- Dirichlet boundary condition. The algorithm that we have just

referred to as a more traditional one is formulated with the Dirichlet boundary condition for E at z = 0. In

fact, already from the standpoint of physics one can anticipate that this algorithm is not going to perform

well when backscattering is present. Indeed, the physical setup of the model implies that all the information

available at z = 0 pertains only to the incoming wave. Thus, we basically cannot say anything about the

backscattered signal ahead of time because it is generated inside the domain (in the current example we, of

course, know everything because we simply construct a sample solution including the backscattering, then

produce the corresponding sources/inhomogeneities, and finally recover the same solution by the numerical

method, but this is done only for the demonstration purposes.) When constructing the two-way ABCs,

we do not make and do not need any assumptions regarding the backscattered wave, we simply make the

boundary transparent for all such waves. In contrast, in the Dirichlet case we can only specify the incoming

wave as the boundary data because no explicit information about other waves is available. Mathematically,

this amounts to making the following assumption/approximation:

E(r,O) =E_nc(r), (7.7)

which, in contradistinction to (2.1), prescribes the entire field at z -- 0, rather than its incoming component

only. Consequently, the Dirichlet boundary condition will essentially reflect all backscattered waves reaching

z = 0 back into the medium, in contrast with the two-way ABC, which will let them go through. We

therefore expect that the algorithm with the Dirichlet boundary condition (7.7) at z = 0 may produce

reasonable results only if no backscattered waves are present in the solution. Otherwise, the error should

be roughly of the magnitude of the backscattered signal. The numerical results below corroborate these

expectations.

Note that to enforce the Dirichlet boundary condition at z = 0 for the discretization we obviously assign

a prescribed value to the solution at the leffmost grid node n = 0. Besides, in the framework of the fourth-

order scheme that we are using, we need an additional relation to be specified right next to the boundary

at n = 1. This is similar to obtaining the discrete one-way Helmholtz equations in the form of two scalar

relations, see Section 6.2. The additional relation for the Dirichlet boundary conditions should be merely an

approximation of the underlying differential equation at n = 1, but this cannot be the same approximation

that we are using for the interior nodes (n _ 2) because the latter employs a five-node wide symmetric stencil.

Thus, either a one-sided difference or a compact Pad6-type approximation needs to be used at n = 1. We

chose the fourth-order Pad6 [6] on a three-node wide stencil in the particular form proposed in [25] because

as opposed to the "long" non-symmetric differences, it preserves the pentadiagonal structure of the matrix.

7.1.2. Results. For the simulations in the linear case we have chosen the following particular values

of parameters (see formulae (7.1), (7.2)): k0 = 20, e = 0.2, p = 3 or p = 1, Zma_ = 30 or Zmax = 10,

fl = 3, C = 1/2 for the case with backscattering, and C = 0 for for the case with no backscattering. The

wavelengths in the r and z directions are/kr = 27_/p and/kz = 27_/ko, respectively. We choose the grid sizes

hr and hz accordingly as fractions of the corresponding wavelengths: For the grid convergence study we

refine the grid synchronously in both r and z directions. We note that having the same resolution (nodes per

wavelength) in both directions yields the cell aspect ratio of hr/h_ = _/_ = ko/p, which in our simulations

is equal to either 20/1 or 20/3.

We have looked at the values of the relative error (the difference between the computed and exact
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solutionnormalizedbythemaximumoftheexactsolutionoverthedomain)in themaximumnorm:

max ]Ecomputed -- Eexact]

Error = w,z;
max ]Eexact ] (7.8)

(r,_)

The results are summarized in Tables 7.1 and 7.2 for p = 1 and p = 3, respectively. In both tables all values,

except those in the last column, correspond to Zmax = 30.

TABLE 7.1

Maximum relative error (7.8) of the calculated solution in the linear case for t_ = 1.

Grid sizes

Backscattering

Off (C = 0) On (C = 1/2)

Boundary condition at z -- 0

Dirichlet Two-way Dirichlet Two-way Two-way

Zmax = 30 Zmax : 10

hr = A_/10, h_ = A_/10 0.256 0.257 0.33 0.24 0.16

h_ = A_/20, h_ = A_/20 0.0165 0.0165 0.33 0.016 0.01

h_ = At/40, h_ = A_/40 0.001 0.001 0.33 0.001 0.0012

h_ = A_/80, h_ = A_/80 6.5.10 -5 6.5.10 -5 0.33 6.5.10 -5 0.00075

TABLE 7.2

Same as Table 7.1_ with _ = 3.

Grid sizes

Backscattering

Off (C = 0) On (C = 1/2)

Boundary condition at z -- 0

Dirichlet Two-way Dirichlet Two-way Two-way

Zmax = 30 Zmax : 10

h_ = A_/10, h_ = A_/10 0.25 0.25 0.33 0.24 0.089

hr = A_/20, h_ = A_/20 0.016 0.016 0.33 0.015 0.0064

h_ = A_/40, h_ = A_/40 0.001 0.001 0.33 0.001 0.0012

h_=Ar/80, h_=A_/80 6.3.10 -5 6.3.10 -5 0.33 6.3.10 -5 0.00075

From Tables 7.1 and 7.2 we first conclude that, as expected, the Dirichlet boundary condition (7.7)

provides no convergence when the backscattering is present (third column). In all other columns we observe

a fourth-order grid convergence, because every time the grid is refined by a factor of two in each direction,

the value of the error drops by approximately a factor of sixteen (except for the last column of each table,

which will be discussed later). Thus, the algorithm that we have constructed indeed possesses the design

convergence properties. Besides, we clearly see that the left propagating waves in the solution present no

problem from the standpoint of numerics for the algorithm with the two-way ABC at z = 0.

Let us now return to the data appearing in the rightmost columns of both Table 7.1 and Table 7.2.

These data clearly do not demonstrate the fourth-order grid convergence. The only difference between these

data and all other data in the tables is that the rightmost columns correspond to a smaller computational
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domain in the z direction, Zmax ---- 10, as opposed to Zmax ---- 30. The breakdown of the grid convergence that

we observe on the small domain has the following explanation.

The boundary condition that we specify at z -- Zmax is the homogeneous radiation boundary condition

(4.10a), which is approximated by the one-way-to-the-right discrete Helmholtz equation (6.16). Both the

continuous (4.10a) and discrete (6.16) radiation boundary conditions at z = Zma_ were obtained under the

key assumption that the governing equation near z = Zma_ reduce to the constant-coemcient Helmholtz

equation AE + k_E = 0. In other words, this means that the mode Eright of (7.2a) has to reduce to

the "pure" propagating mode ei_ _ cos(pr), and the mode Eleft of (7.2b) has to effectively vanish at

z = Zmax. From the specific form of the modes that we analyze, see (7.2), we conclude that the larger we

take the domain [0, Zma_] the better the quality of the agreement with the desired properties near z = Zma_

is going to be. In other words, for the smaller domain Zma_ -- 10 we are essentially trying to apply a

homogeneous radiation boundary condition to the equation, which is not "sumciently homogeneous" itself

and therefore, the error is dominated by this discrepancy, rather than the actual truncation error associated

with the discretization of the differential operator. As a consequence, we do not observe the fourth-order

grid convergence for the smaller domain. This demonstrates the importance of choosing Zma_ sumciently

large, so that the homogeneous radiation boundary conditions can be applied successfully.
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(A) No backscattering, C = 0. (B) With backscattering, C = 1/2.

F_G. 7.1. Behavior of the error (7.9) for u ---- 1, two-way ABC at z ----0, hr ---- At/20, hz ---- Az/20, _ ----3, and Zmax = 30.

Another interesting phenomenon that we would like to discuss in the framework of the linear case is the

behavior of the error as a function of the coordinate z. A typical example in Figure 7.1(a), which corresponds

to the case of no backscattering, shows a linear growth of the error with z except in the area of a small

"bump" near the boundary z = 0. The actual quantity represented in Figure 7.1(a) is

max ]Ecomputed -- Eexact ]

Error(z) --- r (7.9)
max IEe_actI
(r,_)

A similar error pattern is obtained for the case with backscattering, as shown in Figure 7.1(b). The curve

in Figure 7.1(b) can be described as an oscillatory region next to the boundary z = 0 associated with
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backscattering (the magnitude the error is still small there) followed again by a stretch of linear growth.

It is, in fact, easy to see where this linear growth comes from. Proposition 6.1 implies that the discrete

right propagating mode q_ approximates the continuous right propagating mode e ikcz - e ikc'a_n (in the

notations of this section, kc2 -- V/_ - p2). Indeed, assuming that kc • hz is small, we have obtained that

ql = e ik_'a_ + (9 ((kc" hz)5), see formula (6.4a). Consequently, under the same assumption we have q_ --

e ik_'a_n + (9 (n(kc. hz) 5) -- eik_z + (9 (zh 4) because z -- hzn. As 0 _ z _ Zmax, we see that the error grows

linearly in z and that the maximal error is (9(Zmax " h4). The aforementioned linear growth of the error

explains, in particular, why on coarser grids we obtain smaller maximal error for Zmax -- I0 (fifth column)

than for Zma_ -- 30 (fourth column), see Tables 7.1 and 7.2.
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FIG. 7.2. Same as Figure 7.1(a) with Zmax ---- 10.
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It is, in fact, instructive to see how the

error curve similar to those displayed in Fig-

ure 7.1 would look for a solution computed on

the small domain Zma_ = 10. In Figure 7.2

we show such a curve for exactly the same

set of parameters used for computations that

led to Figure 7.1(a), except that Zmax is equal

to 10 instead of 30. Although the magnitude

of the error is small, we observe oscillations

throughout the entire domain. As we have no

backscattering in this case (C -- 0), the os-

cillations may come only from the right (far-

field) boundary z = Zma_. In fact, these oscil-

lations are an early manifestation of the phe-

nomenon that we have discussed earlier. On

small domains, the application of the homoge-

neous far-field radiation boundary conditions

(4.10a) and (6.16) is not fully "legitimate" be-

cause the governing equation itself is not suf-

ficiently close yet to the constant coemcient version AE + k_E -- 0. The inconsistency gives rise to the

oscillations shown in Figure 7.2. For finer grids this inconsistency, as we have seen, prevents the methodol-

ogy from converging on small domains with the theoretically prescribed rate of (9(h4).

7.2. Nonlinear problem. Having corroborated the design properties of the numerical algorithm in

the linear regime in Section 7.1, we now address its performance for the nonlinear case. In all cases that we

analyze hereafter we take the value of k0 = 8 and as before denote _ = 27r/ko. In addition, in all simulations

the solution is driven by the incoming signal

E°nc(r) = e -_2 . (7.10)

The key quantity in the NLS model, as far as nonlinear self-focusing and singularity formation are

concerned, is the ratio of the power of E°nc and the critical power Nc (see Section 3.1). Therefore, we now

briefly review the calculation of the critical power for the NLS (3.3).

7.2.1. Critical power. Weinstein [30] had proved that the critical power for singularity formation in

the critical NLS, Nc, is equal to the power of the so-called waveguide solution. In the case of the (1+1)D
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criticalNLS(3.3),thewaveguidesolutionsareoftheform

¢(z, r) = exp(iaz)Q(r; a) .

Substitution of this solution in (3.3) shows that the waveguide profile Q satisfies:

Qrr-aQ+Q_=O, Q'(0)=0, Q(_)=0.

Integration of this equation yields:

Q(r; a) = (3a)l/4sech 1/2 (2v_r) .

Therefore, a necessary condition for singularity formation in (3.3) is that

where

_o_ I¢o(_)1_d_ _ Nc,

Nc= L_Q2(r)dr= _ .

In dimensional variables, this condition is

oo 0 2
IE_nc(r)12 dr >_ --

Therefore, the fractional critical power of E°nc of (7.10) is

p -- fo IE°ncl_ drNc/kov_ - kov_ .
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FI¢. 7.3. Grid convergence for e = 0.04, Zmax = 20, rmax/Zmax =

1, hz ----Az/10, for hr = Az/2 (solid line), hr = Az/4 (dotted line),

and hr = Az/8 (dashed line).

in the z direction.

(7.11)

7.2.2. Results. We start with a moder-

ate nonlinearity in equation (3.2), e = 0.04,

which, according to (7.11), corresponds to 74%

of the critical power when k0 = 8. Our goal

is to first demonstrate the grid convergence of

the algorithm. We also compare the two-way

ABC against the standard Dirichlet boundary

condition at z = 0, as we did in the linear

case, both from the standpoint of accuracy of

the solution and the rate of convergence of our

iterative scheme.

For the grid convergence study we first

choose the following parameters: Zma_ = 20,

rmax/Zmax = 1, h_ = A_/10, hr = A_/2. In our

computations we have observed that changing

the discretization parameters in the r direc-

tion may exert a more noticeable influence on

the solution than changing the discretization

Therefore, we initially refine the grid in the r direction only and in Figure 7.3 present
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threesolutioncurves:AbsolutevalueIEcomputed(0, Z)l on the axis of symmetry r = 0 as a function of z

for hr = A_/2, A_/4, and A_/8. We see that the last two curves that correspond to hr = A_/4 and A_/8

are virtually indistinguishable from one another and both differ noticeably from the first one obtained on

a coarser grid h_ = A_/2. We therefore conclude that as the grid is refined the numerical solution does

converge, even so in this nonlinear case we do not know what the exact solution is and consequently cannot

explicitly find the error.

We note that we plot the values of the computed solution on the axis of symmetry r = 0 because this is

the most interesting location in the domain where the genuinely nonlinear phenomena take place. A clear

manifestation of this nonlinear phenomena is the "bump", or peak, on the solution curve in Figure 7.3, whose

value is higher than that of the incoming wave Ei°nc(0) = 1. Clearly, in the absence of nonlinear effects (i.e.,

e = 0), an unfocused input beam, such as (7.10), would simply diffract while propagating to the right, i.e.,

toward large z's, with its maximum amplitude monotonically decreasing. The amplification of the incoming

signal due to the nonlinear response of the medium is called self-focusing, and is well-known within the NLS

framework.

0.012 0.012

=o
LU

I

J

0.006
=o

LLi-
I

J

0.006

0 0
0 10 20 0 10 20

r r

(A) hz = Az/10, hr = Az/4 (B) hz = Az/20, hr = Az/8

FIG. 7.4. Backscattering for E = 0.04, Zmax = 20 and rmax/Zmax = 1.

Another interesting phenomenon, which is actually the one that our methodology has been specifically

designed to capture, is backscattering. In the previous linear studies in Section 7.1, the extent of backscatter-

ing was predetermined by the value of C. To estimate the extent of backscattering in the current nonlinear

case, we plot the quantity IEcomputed(r, 0) --E°nc(r)l &s & function of r. In Figure 7.4(a) we show the corre-

sponding graph for e = 0.04, Zma_ = 20, rma_/Zma_ = 1, h_ = A_/10, and h_ = A_/4. From Figure 7.4(a)

we conclude that most backscattering occurs around the axis of symmetry r = 0, and that the magnitude

of backscattering there is about 1.2% of the incoming power. Backscattering obviously accounts for the

deviation of the solution curve at z = 0 in Figure 7.3 from the incoming signal value there, which is equal

to 1.

A comprehensive grid refinement study should, of course, include refinement in the z direction along

with the refinement in the r direction. In addition to the cases reported previously, we have run several

others, refining the grid either separately in each direction or synchronously in both directions, and also

changing the size of the computational domain. Note that determining the correct, i.e., sufficiently large,
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size of the computational domain is important, because choosing it too small in the z direction may cause

reflections from the boundary z = Zma_ (Section 7.1), and choosing the domain too small in the r direction

is dangerous because the boundary r = rmax is reflecting and the reflections may, in fact, completely destroy

the solution (we have actually observed the latter phenomenon in our computations).

Basically, the solutions that we have obtained on all grids finer than hr = Az/2, hz = Az/lO (i.e., finer

than the coarsest of the previous grids), and all domains larger or equal than Zma_ = rmax = 20, are almost

identical. We do not plot these solutions as they are very close to one another, we rather summarize the

results of our computations in Table 7.3, in which the two key quantities for each case are presented: The

maximum value of self-focusing, defined as max_ IE(0, z)l (i.e., the peak on the curve similar to those shown

on Figure 7.3), and the maximum backscattering at z = 0, defined as maxr IE(r, 0) -E°nc(r)l (i.e., the peak

on the curve similar to those shown on Figure 7.4).

TABLE 7.3

Grid refinement and domain enlargement study for E = 0.04.

Zmax rmax/Zmax h_ hr

20 1 A_/10 A_/4

20 1 A_/10 A_/8

20 2 A_/10 A_/4

40 1 A_/IO A_/4

20 1 A_/20 A_/4

20 1 A_/20 A_/8

max. selhfocusing max. backscattering

1.0136 0.013

1.0129 0.0128

1.0135 0.0128

1.0132 0.0127

1.0124 0.0112

1.0119 0.0111

From Table 7.3 we see that all values of maximum self-focusing that we have computed on different

grids and different domains differ from one another by at most 0.17%. This indicates that for those ranges of

parameters (grid sizes and domain sizes) that we have used the numerical solution is already "well converged."

The level of backscattering in all our simulations is between 1.1%- 1.3% of the incoming power, which again

constitutes an error of only about 0.2% (relative to the maximum of the solution). One should probably

regard the computational variant presented in the last row of Table 7.3 as the most accurate one because it

was computed on the finest grid. The corresponding backscattering profile (for h_ = A_/20, h_ = A_/8) is

shown in Figure 7.4(b). We again see that this profile is practically the same as the one from Figure 7.4(a),

which corresponds to the grid twice as coarse in each direction.

We now look at the convergence histories for our numerical solutions. Let us recall that the iteration

scheme that we employ is nested. On the inner loop we solve a variable-coefficient linear equation, whereas

on the outer loop we iterate with respect to the nonlinearity. Currently, we update the coefficient k 2 =

k_ (1 + elEI4), i.e., make one nonlinear iteration, every ten linear iterations [i.e., in the notations of Section 4,

34 (n) = 10 in (4.4)]. In Figure 7.5 we show the convergence histories for the two cases that we have discussed

before -- those that correspond to the first and last rows of Table 7.3 (Figure 7.5(a) and Figure 7.5(b),

respectively).

32



10°

m

10-5

LU=

N

_ 10-1°E

10-_5
1O0 200 300 400

iteration number (n)

10°

ILl

a

3'-" 10-1°E

10-15
50 100 150 200

iteration number (n)

(A) hz ---- Az/10, hr = Az/4 (B) hz ---- Az/20, hr = Az/8

FIG. 7.5. Convergence of iterations for E ---- 0.04, Zmax ---- 20, rmax/Zmax = 1.

The actual quantity shown in Figures 7.5 is the maximum absolute difference between the two consecutive

iterations. The sawtooth character of both curves is accounted for by the nested structure of the iterative

procedure. The fast-scale decay followed by a jump back up is the convergence of linear iterations on the

inner loop with subsequent update of k 2. The slow-scale decay all the way up to machine zero corresponds

to the convergence of nonlinear iterations on the outer loop.
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FIG. 7.6. IEcomputed(0, z)l for the two-way ABC (solid) and for

the Dirichlet BC (dots).

Figures 7.5 demonstrate the convergence

of iterations. Besides, we notice that on a

finer grid, see Figure 7.5(b), this convergence

is faster (about twice as fast) than on the

coarser one, see Figure 7.5(a). In fact, we have

observed in different simulations that the ge-

ometry in the r direction influences the rate

of convergence most noticeably. The larger

the domain size rmax and/or the finer the grid

size hr, the faster the iterations converge. As

of yet, we do not have a rigorous explanation

of this computational phenomenon. We can

only assume that both refining the grid in the

r direction and putting the boundary r = rma_

further away somehow reduce the adverse in-

fluence of this reflecting boundary on the so-

lution.

As stated at the beginning of this section, a major goal of the nonlinear simulations is to compare the

performance of the new two-way ABC against that of the traditional Dirichlet boundary condition at z = 0

(7.7). In Figure 7.6 we compare the actual computed solutions with the two boundary conditions for the

case that we have analyzed before: c = 0.04, Zma_ = 20, rma_/Zma_ = 1, h_ = A_/10, hr = A_/4. We see a

noticeable discrepancy between the two curves. The dotted line that corresponds to the Dirichlet boundary
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conditions is above the solid one, which corresponds to the two-way ABC. The extent of the aforementioned

discrepancy is roughly equal to the level of backscattering that we have recovered previously, which is clearly

a natural result to observe.
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We also compare the rates of convergence

of the iterative algorithm for the two types

of boundary conditions that we set at z = 0.

The convergence history for the two-way ABC

is shown in Figure T.5(a), the convergence his-

tory for the Dirichlet boundary conditions is

shown in Figure T.T. We see that the con-

vergence with the two-way ABCs is about

1.5 times faster that that with the Dirich-

let boundary conditions, which presents an-

other advantage of using the new methodol-

ogy. Let us mention that the phenomenon

of convergence speedup for iterative solvers

caused by the application of highly-accurate
FIc. 7.7. Same as Figure 7.5(a), with the Dirichlet boundary

condition at z = O. nonlocal ABCs (similar to those developed in

this paper) has been noticed previously by sev-

eral authors, although in completely different settings primarily associated with the fluid flow computations,

see [28].
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We now consider the case e -- 0.06, for

which the input beam power is 90% of the

critical power. Basically, the results have

the same qualitative features as for the case

e = 0.04. In particular, the convergence of it-

erations is faster for finer grids and larger com-

putational domains, as well as for the two-way

ABC compared with the traditional Dirichlet

boundary condition at z -- 0. Moreover, we

note that for e = 0.06 some cases with the

Dirichlet boundary condition did not converge

at all.

In Figure T.SA, we plot the on-axis am-

plitude raised to the power 4 for the domain

of the same size as corresponds to Figure T.3

(but with a finer grid). We plot this particu-

lar quantity because on one hand, it is the one

0 1'0 20

z

FIG. 7.8. IEcomputed(0, z)l a for E = 0.06, h_ = A_/20, hr = A_/8,

rmax/Zmax : 1. A -- Zmax : 20, B -- Zmax : 40.

that controls the relative magnitude of nonlinearity, which is crucial for our study, and on the other hand it

allows to see most clearly that the solution for Zma_ = 20 has small oscillations throughout the domain, which

are reminiscent of those seen in Figure T.2. In order to verify that these oscillations are indeed due to the

right boundary z = zmax being placed too close, we re-ran the same simulation but with the right boundary

located at twice the previous distance, i.e., Zma_ = 40. The corresponding profile of IEcomputed(0, Z)l 4 is
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shown in Figure 7.8B, but only for the half of the new range: 0 < z < 20, to make the scale the same as

that on Figure 7.8A. From Figure 7.8B we see that in the case Zma_ = 40 the little wiggles have almost

disappeared, suggesting that this is indeed a numerical artifact, rather than a true physical phenomenon.

Apart from the little wiggles, the two solutions seem to be identical as Figure 7.9 indicates.

The explanation for the appearance of the
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F[G. 7.9. IEcomputed(0,z)l for e = 0.06, hz = Az/20, hr = Az/8,

rmax/Zmax = 1. Solid line -- Zmax = 20, dotted line -- Zmax = 40.

small wiggles throughout the domain when the

right boundary is too close is the same as in

the linear case, namely, that in order for the

ABC at Zma_ to perform well, cIEI 4 should be

sufficiently small there so that k 2 _ kg with

sufficient accuracy. Therefore, at higher e, one

needs more decay in IEI 4 for this approxima-

tion to hold. On top of that, at higher pow-

ers self-focusing is stronger, implying that IEI4

would decay slower in z. This, in turn, means

that we may need to take larger and larger do-

mains at higher powers, otherwise, the quality

of the computed solution will deteriorate. Be-

sides, the convergence rate of our iterations

may also be affected by the location of the

boundary z -- Zmax. For higher powers on

those domains that we have considered it becomes prohibitively slow (if there is convergence at all). This is

the reason why, at present, we could not go above e -- 0.06. We should note, however, that besides enlarging

the domain, changing the iterative algorithm itself to a more efficient one may alleviate the aforementioned

problem. This issue will be studied in the future.

The results of the grid convergence study for e -- 0.06 are summarized in Table 7.4. Comparison of

Table 7.3 with Table 7.4 shows that as the input power increases (relative to the critical power), more energy

gets back-scattered and the self-focusing peak becomes higher, which is expected from physical considerations.

TABLE 7.4

Same as Table 7.3 with e = 0.06.

Zmax rmax/Zmax h_ hr

20 1 Az/lO Az/4

20 1 A_/20 A_/8

20 1 Az/20 Az/16

20 2
20 1 X_/40 _/8

40 1 A_/20 A_/8

max. selSfocusing max. backscattering

1.0567 0.0188

1.0528 0.0188

1.0526 0.0188

1.0527 0.0188

1.0518 0.0179

1.0512 0.0173

8. Discussion. In this section we briefly describe the approaches that have been used previously in the

literature for solving similar problems, discuss the motivation behind making some particular choices when

constructing our algorithm, present the conclusions, and outline directions for future research.
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8.1. Previous approaches for solving the NLH. Feit and Fleck solved the NLH by splitting the

wave into its forward- and backward-components, and solving only for the forward propagating part. Under

this approach it was assumed that the "transverse variation in [k] is sufficiently small." As for backscattering,

their algorithm "removes power that cannot propagate in the forward direction without accounting explicitly

to where it goes" [8]. Akhmediev and collaborators [1,2] solved an initial-value problem which can be viewed

as a "modified" NLH. However, they neglected the _ term, as well as backscattering.

In contrast to the aforementioned approaches, in this paper we solve the Helmholtz equation as a true

"unabridged" boundary value problem. By doing that, we can account correctly for the backscattering,

without introducing any ad-hoc assumptions, the validity of which is unclear.

8.2. Discontinuity at the interface z = 0. In the current study we consider the simplest possible

model for the interface z = 0, where we assume that this interface is non-reflecting, i.e., the wavenumber k is

continuous across z = 0 (Section 2.1). From the standpoint of physics this is, of course, not necessarily true.

For example, an incoming laser beam traveling through air which impinges on a water interface would be

partially reflected, due to the difference in the (linear) index of refraction between air and water. The easiest

way to incorporate the discontinuity in k at z = 0 into the model would be to do that already for the linear

constant-coefficient equation (4.4) in the framework of the iteration scheme, as we do all other boundary

conditions. After the transverse Fourier transform, we obtain a collection of one-dimensional Helmholtz

equations. For each of the latter, the application of the standard elliptic interface conditions, which for the

second-order equations are the continuity of the solution and its flux across the interface, yields the standard

expressions for the reflection and transmission coefficients, once the incoming wave is given. If we want to

use the transmitted wave (i.e., already past the interface) as the primary data for the problem, the same

expressions will yield the amount of reflections and the original incoming signal. Moreover, they will also

apply to treating the possible reflection of the backscattered waves by the interface z = 0.

8.3. Nonlinear iterations. The primary motivation behind our choice of the nonlinear iteration

scheme (see Section 4) was its simplicity. We note that equations (4.1), (4.2) have been obtained by simply

freezing the nonlinear term rather than differentiating it in the sense of Frechet. For complex-valued solu-

tions E (which is the case in our study) the nonlinearity in equation (3.2) is obviously non-differentiable

and consequently, the direct implementation of the Newton's method is not possible. As, however, been

mentioned by Bayliss [3], Newton-type iterations may still apply to equation (3.2) if it is solved separately

for the real and imaginary components of E. We did not try to implement this idea in the current study.

We acknowledge, however, that among the different parts of our algorithm the nonlinear iteration scheme

is apparently the primary candidate for improvements in order to achieve convergence with higher input

power, i.e., for larger e.

8.4. Linear solver. The solver that we employ for the variable-coefficient linear Helmholtz equation is

also iterative and fits as the inner loop of the overall nonlinear solver. This choice is, of course, by no means

unique. In general, one can solve the linear Helmholtz equation with variable coefficients using a variety of

other methods, such as the Ricatti method [16]. A recent review of different approaches for solving the linear

Helmholtz equation by Turkel can be found in [29]. We note, however, that combining a Helmholtz solver

with global ABCs, and in particular, a two-way ABC of the type constructed in this paper, presents a rather

difficult task, since the speed of propagation of plane waves in the z direction depends on their transverse

wavenumber. Indeed, most of the solvers available in the literature deal with simpler boundary conditions,

such as those of the Dirichlet type. The solver that we have constructed involves a direct inversion of the
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constant-coemcientoperatoroneveryiterationusingtheseparationofvariables.Thisapproach,ashasbeen
mentioned,ismostnaturalforincorporatingglobalABCsintothemodel.

8.5. Fourth-orderscheme.In thisstudywechoseafourth-ordermethod,ratherthanaconventional
second-orderone,for oursimulations.Themotivationbehindthischoiceis, in fact,standard,andrelies
primarilyon thepossibilityof havinglesspointsperwavelengthandaccordinglyreducingthe required
overallgriddimensionfor agivenlevelofaccuracy.Besides,ournumericalsimulationscorroboratethat the
extentofbackscatteringin themodelthat westudyis indeedsmall.In thecaseslikethat, i.e.,whenthe
interestingphenomenonis smallin magnitudecomparedto thebackground,it is generallyacknowledged
thathigher-ordermethodsperformbetterthanlower-orderones.

Wenotein thisconnectionthat theconstructionofone-waydiscreteHelmholtzequationsandradiation
ABCsfor a second-orderschemewouldbeconceptuallythesameastheonedescribedin Section6 but
substantiallylesscumbersomein bothderivationandimplementation,asit wouldnot requiretakingcare
of anextrapairof evanescentwaves.However,havinga higherordermethodjustifies,in ouropinion,the
additionalworkinvestedinobtainingthemoresophisticatedABCs.

8.6. Conclusions.Summarizing,wesaythatin thecurrentpaperwehavedevelopedandimplemented
afourth-orderfinite-differencemethodforsolvingthenonlinearscalarHelmholtzequationthataccountsfor
thephenomenaof self-focusingandbackscattering.Themethodis supplementedby thehighly-accurate
globalABCsthatmaketheexternalartificialboundariesfully transparentforall outgoingwaves(including
thebackscatteredwaves)andat thesametimearecapableofcorrectlyprescribingtheincomingsignalat
theouterboundaryofthecomputationaldomain.Tothebestofourknowledgethisisthefirstattemptever
ofconstructingglobalABCsthat possesstheforegoingtwo-waycapability.

Thefourth-ordergrid convergenceof the methodhasbeendirectlyverifiedby solvingmodellinear
problems.In thepresenceof backscattering,thenewmethodclearlyoutperformsa traditionaltechnique
basedontheDirichletboundarycondition.Wehavealsoconducteda comprehensiveexperimentalstudyof
thenonlinearcasein theregimewheretheinputpowerisbelowthecriticaloneforblowup.Similarlyto the
linearcase,thisstudycorroboratestheconvergenceof themethodandits superiorityoverthetraditional
approach.

Thenewmethodallowsfora systematicquantitativestudyofbackscatteringinnonlinearself-focusing.
Tothebestof ourknowledge,this is thefirst studythat allows,for example,to calculatetheactualextent
of backscattering,its dependenceon the input power,etc. As hasbeenmentioned,the newextended
capabilitiesareaccountedforbythefactthat,unlikepreviousstudies,wesolvetheNLHasatruenonlinear
boundaryvalueproblem,withoutintroducinganysimplifyingassumptionsonthecontinuouslevelpriorto
thediscretization.Therefore,theonlyerrorthat weareactuallyleftwith isthetruncationerrorassociated
withthediscreteapproximationofderivatives.

8.7. Future work. In thispaperwehavedevelopeda newnumericalmethodologyforsolvingthetrue
boundaryvalueproblemfor theNLH.Webelievethat ourapproachcanbeextendedto addressvarious
otherissuesthatarenotcoveredbythepresentstudy.Forexample,it is interestingto conductasystematic
comparisonofNLHsimulationswiththecorrespondingNLSsimulations.Suchacomparisonwouldenhance
ourunderstandingon theroleof nonparaxialityandbackscattering.It is alsointerestingto compareour
NLHsimulationswith theearlierapproachesfor solvingtheNLH,whichdid not treattheNLHasa true
boundary-valueproblem.In addition,futurestudiesshouldattemptto goabovethe criticalpowerfor
blowup.If successful,thiswouldprovideastrongsupportfor thecurrentbeliefthatthereis noblowupin
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thepresenceofnonparaxiality.
InthisstudywehaveprimarilyfocusedontheNLHwhichcorrespondsto thecriticalNLS.However,our

numericalapproachcanbeappliedforbothsubcriticalNLS(e.g.,calculatingtheamountofbackscattering
forsolitons),aswellasthesupercriticalcase.

Wefinallynotethat thenonlocalhomogeneousradiationABCat z -- Zmax, as well as the nonlocal non-

homogeneous two-way ABC at z = 0, can be cast into the general framework of pseudo-differential boundary

equations and projection operators of Calderon's type (the Calderon equation in the case of the two-way

ABC will be non-homogeneous as well) and the difference potentials method by Ryaben'kii, see [5,18, 21-24].

This, in particular, may allow considering curvilinear outer boundaries if necessary, as opposed to only

linear boundaries considered in the current study. Besides, such a reformulation will be generally useful from

the standpoint of understanding the fundamental connections between global ABCs of different types that

appear in the scientific computing literature.
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